A245319 Numbers k that divide 2^k + 8.
1, 2, 4, 5, 6, 8, 12, 18, 24, 36, 72, 88, 198, 228, 1032, 2412, 2838, 4553, 5958, 10008, 24588, 25938, 46777, 65538, 75468, 82505, 130056, 143916, 200364, 540738, 598818, 750852, 797478, 923628, 958212, 1151538, 1250568, 1505388, 1647396, 2365128, 2964036, 3490028, 3704418, 3844808
Offset: 1
Keywords
Examples
2^4 + 8 = 24 is divisible by 4. Thus 4 is a term of this sequence. 2^5 + 8 = 40 is divisible by 5. Thus 5 is a term of this sequence.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..929 (terms 1..58 from Harvey P. Dale)
- OEIS Wiki, 2^n mod n
Programs
-
Maple
select(n -> 2 &^ n + 8 mod n = 0, [$1..10^6]); # Robert Israel, Jul 18 2014
-
Mathematica
Join[Select[Range[7],Divisible[2^#+8,#]&],Select[Range[4000000], Abs[ PowerMod[ 2,#,#]-#]==8&]] (* Harvey P. Dale, May 25 2016 *)
-
PARI
for(n=1,10^9,if(Mod(2,n)^n==Mod(-8,n),print1(n,", ")));