A245322 E.g.f.: Sum_{n>=0} sin(n*x)^n.
1, 1, 8, 161, 6016, 360421, 31628288, 3823725821, 609263681536, 123729353398441, 31195066498285568, 9560281195915697081, 3500145542231863853056, 1508772905238685631514061, 756360258034794813559144448, 436312320288025061112662937941, 286966475921556619941746443288576
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
nmax=20; Flatten[{1,Rest[CoefficientList[Series[Sum[Sin[k*x]^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!]}] Flatten[{1,Table[Sum[(-1)^k * (n-2*k)^n * 2^(2*k-n) * Sum[Binomial[n-2*k,j] * (-1)^j * (n-2*k-2*j)^n,{j,0,n-2*k}],{k,0,n/2}],{n,1,20}]}]
-
PARI
{a(n)=n!*polcoeff(sum(k=0, n, sin(k*x+x*O(x^n))^k), n)} for(n=0, 20, print1(a(n), ", "))
Formula
a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = 2.6508143537621057095493599669955786931108630276472035393383790812849064745..., c = 0.447880926276318254580767843378566025547642779941081708311676940459098... - Vaclav Kotesovec, Nov 05 2014, updated Jun 02 2022
Comments