cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245325 Numerators of an enumeration system of the reduced nonnegative rational numbers.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 3, 3, 2, 1, 5, 4, 5, 4, 5, 4, 5, 4, 3, 3, 2, 1, 8, 7, 7, 5, 8, 7, 7, 5, 8, 7, 7, 5, 8, 7, 7, 5, 5, 4, 5, 4, 3, 3, 2, 1, 13, 11, 12, 9, 11, 10, 9, 6, 13, 11, 12, 9, 11, 10, 9, 6, 13, 11, 12, 9, 11, 10, 9, 6, 13, 11, 12, 9, 11, 10, 9, 6, 8, 7, 7, 5, 8, 7, 7, 5, 5, 4, 5, 4, 3, 3, 2, 1, 21, 18, 19, 14, 19
Offset: 1

Views

Author

Yosu Yurramendi, Jul 18 2014

Keywords

Comments

a(n)/A245326(n) enumerates all the reduced nonnegative rational numbers exactly once.
If the terms (n>0) are written as an array (in a left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
1,2,
2,1,3,3,
3,3,2,1,5,4,5,4,
5,4,5,4,3,3,2,1,8,7,7,5,8,7,7,5,
8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,
then the sum of the m-th row is 3^m (m = 0,1,2,), and each column k is a Fibonacci sequence.
If the rows are written in a right-aligned fashion:
1,
1,2,
2, 1,3,3,
3, 3, 2,1, 5, 4,5,4,
5, 4, 5,4, 3, 3,2,1, 8, 7, 7,5, 8, 7,7,5,
8,7,7,5,8,7,7,5,5,4,5,4,3,3,2,1,13,11,12,9,11,10,9,6,13,11,12,9,11,10,9,6,
then each column is an arithmetic sequence. The differences of the arithmetic sequences give the sequence A071585 (a(2^(m+1)-1-k) - a(2^m-1-k) = A071585(k), m = 0,1,2,..., k = 0,1,2,...,2^m-1).
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are permutations of terms of blocks from A002487 (Stern's diatomic series or the Stern-Brocot sequence), and, more precisely, the reverses of blocks of A229742 (a(2^m+k) = A229742(2^(m+1)-1-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1). Moreover, each block is the bit-reversed permutation of the corresponding block of A245327.

Crossrefs

Programs

  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 0:blocklevel) for(k in 0:(2^(m-1)-1)){
      a[2^(m+1)+k]             <- a[2^m+2^(m-1)+k]
      a[2^(m+1)+2^(m-1)+k]     <- a[2^m+k]
      a[2^(m+1)+2^m+k]         <- a[2^(m+1)+k] +  a[2^m+k]
      a[2^(m+1)+2^m+2^(m-1)+k] <- a[2^(m+1)+2^m+k]
    }
    a

Formula

a(n) = A002487(A059893(A180200(n))) = A002487(1+A059893(A154435(n))). - Yosu Yurramendi, Sep 20 2021