A245332 Number of compositions of n into parts 2 and 3 with at least one 2 and one 3.
0, 0, 0, 0, 0, 2, 0, 3, 3, 4, 6, 9, 10, 16, 20, 27, 36, 49, 63, 86, 113, 150, 199, 265, 349, 465, 615, 815, 1080, 1432, 1895, 2513, 3328, 4409, 5841, 7739, 10250, 13581, 17990, 23832, 31571, 41824, 55403, 73396, 97228, 128800, 170624, 226030, 299424, 396655
Offset: 0
Examples
a(12) = number of rearrangements of 33222 = 5!/(3!*2!) = 10.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1, 1, 3, 2, -1, -2, -1).
Programs
-
Mathematica
CoefficientList[Series[x^5 (x^2 + 2 x + 2)/((x - 1) (x + 1) (x^2 + x + 1) (x^3 + x^2 - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 25 2014 *)
-
PARI
a=vector(100); a[5]=2; a[7]=3; b=[1,1,0,2,0,1]; k=1; for(n=8, #a, a[n]=a[n-2]+a[n-3]+b[k]; if(k==6, k=1, k++)); a \\ Colin Barker, Jul 18 2014
-
PARI
x='x+O('x^66); r=2; s=3; gf = 1 + 1/(1-x^r-x^s) - 1/(1-x^r) - 1/(1-x^s); Vec(gf) \\ Joerg Arndt, Jul 24 2014
Formula
a(n) = a(n-2)+a(n-3)+b(n) with initial terms a(5)=2,a(6)=0,a(7)=3 and b(8)=1,b(9)=1,b(10)=0,b(11)=2,b(12)=0,b(13)=1 and b(n)=b(n-6).
G.f.: x^5*(x^2+2*x+2) / ((x-1)*(x+1)*(x^2+x+1)*(x^3+x^2-1)). - Colin Barker, Jul 18 2014
Extensions
More terms from Colin Barker, Jul 18 2014
Comments