A245340 Smallest m such that A125717(m) = n, or -1 if n never appears.
0, 1, 4, 2, 8, 21, 3, 5, 18, 16, 14, 12, 10, 6, 1518, 32, 58, 30, 184, 28, 7, 26, 9, 11, 13, 15, 17, 19, 102, 51, 100, 49, 98, 47, 96, 45, 94, 43, 92, 41, 90, 39, 88, 37, 86, 35, 84, 20, 24, 22, 505, 81, 2510, 79, 166, 77, 296, 75, 501, 73, 162, 71, 498, 69
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Ferenc Adorjan, Some characteristics of Leroy Quet's permutation sequences
- N. J. A. Sloane, Log-log plot of A370956 vs A370959 (shows terms in A125717 that take the longest to appear).
Programs
-
Haskell
import Data.IntMap (singleton, member, (!), insert) a245340 n = a245340_list !! n a245340_list = 0 : f [1..] [1..] 0 (singleton 0 0) where f us'@(u:us) vs'@(v:vs) w m | u `member` m = (m ! u) : f us vs' w m | otherwise = g (reverse[w-v,w-2*v..1] ++ [w+v,w+2*v..]) where g (x:xs) = if x `member` m then g xs else f us' vs x $ insert x v m
-
Python
from itertools import count def A245340(n): a, aset = 0, set() for m in count(1): if a==n: return m-1 aset.add(a) a = next(a for a in count(a%m,m) if a not in aset) # Chai Wah Wu, Mar 13 2024
Comments