A245388 Numbers k such that k - tau(k) is a perfect square.
1, 2, 3, 4, 8, 11, 24, 83, 85, 125, 152, 156, 175, 227, 297, 365, 443, 445, 533, 584, 600, 629, 847, 924, 965, 969, 1036, 1091, 1304, 1308, 1458, 1523, 1612, 1685, 1800, 1853, 1960, 2027, 2316, 2340, 2409, 2605, 2716, 2813, 3029, 3251, 3729, 3973, 4108, 4233
Offset: 1
Keywords
Examples
4 - tau(4) = 4 - 3 = 1^2 so 4 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Robert Israel)
Programs
-
Maple
filter:= proc(n) local t; t:= numtheory:-tau(n); issqr(n-t) end proc; select(filter, [$1..10^4]);
-
Mathematica
Select[Range[10^4], IntegerQ[Sqrt[# - DivisorSigma[0, #]]]&] (* Jean-François Alcover, Apr 12 2019 *)
-
PARI
isok(k) = issquare(k - numdiv(k)); \\ Amiram Eldar, Feb 01 2025
-
Sage
def is_A245388(n): a = sloane.A000005 return is_square(n - a(n)) A245388_list = lambda up_to: filter(is_A245388, (1..up_to)) A245388_list(4333) # Peter Luschny, Jul 20 2014
Comments