cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A316367 G.f. satisfies: A(x) = Sum_{n>=0} x^n / (1 - (n+1)*x*A(x)^2).

Original entry on oeis.org

1, 2, 8, 45, 297, 2144, 16398, 130622, 1072509, 9015741, 77229624, 671868010, 5921241337, 52764270015, 474699837123, 4306641596007, 39363068782364, 362191362113221, 3352866324085927, 31210685632641522, 292025240058727496, 2745513045893833352, 25929804402647536603, 245958435266263341412, 2342884864036837008480, 22409497495190975013498
Offset: 0

Views

Author

Paul D. Hanna, Jul 21 2018

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 45*x^3 + 297*x^4 + 2144*x^5 + 16398*x^6 + 130622*x^7 + 1072509*x^8 + 9015741*x^9 + 77229624*x^10 + ...
where we have the following series identity:
A(x) = 1/(1-x*A(x)^2) + x/(1-2*x*A(x)^2) + x^2/(1-3*x*A(x)^2) + x^3/(1-4*x*A(x)^2) + x^4/(1-5*x*A(x)^2) + x^5/(1-6*x*A(x)^2) + x^6/(1-7*x*A(x)^2) + ...
is equal to
A(x) = 1/(1-x) + x/(1-x)^2*A(x)^2/(1+x*A(x)^2) + 2!*x^2/(1-x)^3*A(x)^4/((1+x*A(x)^2)*(1+2*x*A(x)^2)) + 3!*x^3/(1-x)^4*A(x)^6/((1+x*A(x)^2)*(1+2*x*A(x)^2)*(1+3*x*A(x)^2)) + 4!*x^4/(1-x)^5*A(x)^8/((1+x*A(x)^2)*(1+2*x*A(x)^2)*(1+3*x*A(x)^2)*(1+4*x*A(x)^2)) + 5!*x^5/(1-x)^6*A(x)^10/((1+x*A(x)^2)*(1+2*x*A(x)^2)*(1+3*x*A(x)^2)*(1+4*x*A(x)^2)*(1+5*x*A(x)^2)) + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m/(1 - (m+1)*x*A^2 +x*O(x^n)))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, m!*x^m*A^(2*m)/(1-x +x*O(x^n))^(m+1)/prod(k=1, m, 1 + k*x*A^2 +x*O(x^n)))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n / (1 - (n+1)*x*A(x)^2).
(2) A(x) = Sum_{n>=0} n! * x^n/(1-x)^(n+1) * A(x)^(2*n) / Product_{k=1..n} (1 + k*x*A(x)^2).
Showing 1-1 of 1 results.