cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245392 Sum_{k, k|n} 2^(k-1) + Sum_{1<=k<=n, gcd(k,n)=1} 2^(k-1).

Original entry on oeis.org

2, 4, 8, 16, 32, 56, 128, 224, 480, 856, 2048, 3200, 8192, 13656, 29920, 54752, 131072, 202104, 524288, 857952, 1939168, 3495256, 8388608, 12918016, 33013248, 55924056, 124631008, 222655840, 536870912, 809850488, 2147483648, 3579172320, 7974270688, 14316557656
Offset: 1

Views

Author

Michel Marcus, Jul 21 2014

Keywords

Comments

The 1's in the binary expansion of 2^n - a(n) correspond to k such that 1 < gcd(k,n) < k < n. - Robert Israel, Jul 21 2014

Crossrefs

Programs

  • Maple
    f:= proc(k,n) local g; g:= igcd(k,n); g = 1 or g = k end proc:
    A:= n -> 1 + add(2^(k-1),k=select(f,[$1..n],n));
    seq(A(n),n=1..100); # Robert Israel, Jul 21 2014
  • PARI
    sum(k=1, n, if (gcd(k,n)==1, 2^(k-1), 0)) + sumdiv(n, k, k*2^(k-1));

Formula

a(n) = A034729(n) + A054432(n).
If p is prime a(p) = 2^p.