cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245438 a(n) = the number of ways in which n is equal to the sum of digits > 0 taken from numbers <= n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 8, 17, 53, 158, 450, 1224, 3195, 8036, 19585, 46549, 108541, 219677, 664149, 1891075, 5091680, 13004347, 31632641, 73745789, 166055768, 364027232, 782374631, 1462836178, 4198493416, 11171538552, 27755958012
Offset: 1

Views

Author

Anthony Sand, Jul 22 2014

Keywords

Comments

Let the range (1,n) in base 10 be represented in the form (1.A,n.A) = (1.A, 2.A, 3.A...n.A), where digit A = 10 in bases >= 11. Let samplesum(d(i),i=1..n) sum single digits d(i) sampled from each member of (1.A,n.A). The list above is the number of ways in which n = samplesum(d(i),i=1..n) when 0 < d(i) < A, for all i. Because d(i) is not permitted to equal 0, sums like these are not counted separately:
10 = 1 + 2 + 3 + 4.
10 = 1 + 2 + 3 + 4 + 0 (of 10).
11 = 1 + 2 + 3 + 4 + 0 (of 10) + 1 (of 11).
11 = 1 + 2 + 3 + 4 + 1 (of 11).
12 = 1 + 2 + 3 + 6.
12 = 1 + 2 + 3 + 6 + 0 (of 10).
However, these two sums are counted separately:
11 = 1 + 2 + 3 + 4 + 1 (first digit of 11).
11 = 1 + 2 + 3 + 4 + 1 (second digit of 11).

Examples

			1 = 1 (sum=1).
2 = 2 (s=1).
3 = 1 + 2; 3 (s=2).
4 = 1 + 3; 4 (s=2).
5 = 2 + 3; 1 + 4; 5 (s=3).
6 = 1 + 2 + 3; 2 + 4; 1 + 5; 6 (s=4).
7 = 1 + 2 + 4; 3 + 4; 2 + 5; 1 + 6; 7 (s=5).
8 = 1 + 3 + 4; 1 + 2 + 5; 3 + 5; 2 + 6; 1 + 7; 8 (s=6).
9 = 2 + 3 + 4; 1 + 3 + 5; 4 + 5; 1 + 2 + 6; 3 + 6; 2 + 7; 1 + 8; 9 (s=8).
10 = 1 + 2 + 3 + 4; 2 + 3 + 5; 1 + 4 + 5; 1 + 3 + 6; 4 + 6; 1 + 2 + 7; 3 + 7; 2 + 8; 1 + 9; 2 + 3 + 4 + 1 (of 10); 1 + 3 + 5 + 1 (of 10); 4 + 5 + 1 (of 10); 1 + 2 + 6 + 1 (of 10); 3 + 6 + 1 (of 10); 2 + 7 + 1 (of 10); 1 + 8 + 1 (of 10); 9 + 1 (of 10) (s=17).
11 = 3 + 4 + 5 + 1 (of 10).
12 = 1 + 2 + 5 + 1 (of 10) + 1 (of 11) + 2 (of 12).
13 = 1 + 2 + 6 + 1 (of 11) + 2 (of 12).
14 = 3 + 4 + 1 (of 10) + 1 (of 11) + 2 (of 12) + 3 (of 13).
15 = 3 + 5 + 1 (of 10) + 2 (of 12) + 3 (of 13) + 1 (of 14).
		

Crossrefs

Programs

  • PARI
    /* To include 0 in sums, change "dn[i]>0" to "dn[i]>=0" */
    { nmx=20; b=10; d = vector(nmx+1); s = vector(nmx+1); for(n=1,nmx+1, dn=digits(n,b); nn=0; for(i=1,#dn,if(dn[i]>0,nn=nn*b+dn[i])); d[n]=nn; ); for(n=1,nmx, si=1; c=0; until(si>n, nn=0; for(i=1,si,if(s[i]>0,nn+=(d[i]\b^(s[i]-1))%b);if(nn>n,i=si)); if(nn==n,c++); incs(); ); s[si]=0; print1(c,", ")); break; }
    {incs() = s[1]++; i=1; while(d[i]\b^(s[i]-1)==0, s[i]=0; i++; s[i]++; ); if(i>si,si=i); } \\ Anthony Sand, Aug 15 2014
    A245438(n) = my(X = 'x + O('x^(n+1))); polcoef( prod(i=1,n, 1 + vecsum(apply(t->(t>0)*X^t,digits(i))) ), n); \\ Max Alekseyev, Sep 04 2023

Extensions

More terms from Max Alekseyev, Sep 04 2023