cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245439 The number of ways in which n is equal to the sum of digits taken from the numbers <= n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 8, 26, 81, 243, 693, 1887, 4932, 12418, 30288, 72026, 167989, 541500, 1635975, 4662579, 12580587, 32228307, 78662108, 183988734, 415466897, 912816164, 1965020012, 6121555788, 17573354640, 46896718806
Offset: 1

Views

Author

Anthony Sand, Jul 22 2014

Keywords

Comments

Let the range (1,n) in base 10 be represented in the form (1.A,n.A) = (1.A, 2.A, 3.A...n.A), where digit A = 10 in bases >= 11. Let samplesum(d(i),i=1..n) sum solitary digits d(i) sampled from each member of (1.A,n.A) (i.e., only one digit at a time is sampled from a particular number). The list above is the number of ways in which n = samplesum(d(i),i=1..n) when 0 <= d(i) < A for all i. Because d(i) is permitted to equal 0, sums like these are counted separately:
10 = 1 + 2 + 3 + 4
10 = 1 + 2 + 3 + 4 + 0 (of 10)
11 = 1 + 2 + 3 + 4 + 1 (of 11)
11 = 1 + 2 + 3 + 4 + 0 (of 10) + 1 (of 11)
12 = 1 + 2 + 3 + 6
12 = 1 + 2 + 3 + 6 + 0 (of 10)
These two sums are also counted separately:
11 = 1 + 2 + 3 + 4 + 1 (first digit of 11)
11 = 1 + 2 + 3 + 4 + 1 (second digit of 11)
However, this sum is excluded:
11 = 2 + 3 + 4 + 1 (first digit of 11) + 1 (second digit of 11)

Examples

			1 = 1 (sum=1)
2 = 2 (s=1)
3 = 1 + 2; 3 (s=2)
4 = 1 + 3; 4 (s=2)
5 = 2 + 3; 1 + 4; 5 (s=3)
6 = 1 + 2 + 3; 2 + 4; 1 + 5; 6 (s=4)
7 = 1 + 2 + 4; 3 + 4; 2 + 5; 1 + 6; 7 (s=5)
8 = 1 + 3 + 4; 1 + 2 + 5; 3 + 5; 2 + 6; 1 + 7; 8 (s=6)
9 = 2 + 3 + 4; 1 + 3 + 5; 4 + 5; 1 + 2 + 6; 3 + 6; 2 + 7; 1 + 8; 9 (s=8)
10 = 1 + 2 + 3 + 4; 2 + 3 + 5; 1 + 4 + 5; 1 + 3 + 6; 4 + 6; 1 + 2 + 7; 3 + 7; 2 + 8; 1 + 9; 1 + 2 + 3 + 4 + 0 (of 10); 2 + 3 + 5 + 0 (of 10); 1 + 4 + 5 + 0 (of 10); 1 + 3 + 6 + 0 (of 10); 4 + 6 + 0 (of 10); 1 + 2 + 7 + 0 (of 10); 3 + 7 + 0 (of 10); 2 + 8 + 0 (of 10); 1 + 9 + 0 (of 10); 2 + 3 + 4 + 1 (of 10); 1 + 3 + 5 + 1 (of 10); 4 + 5 + 1 (of 10); 1 + 2 + 6 + 1 (of 10); 3 + 6 + 1 (of 10); 2 + 7 + 1 (of 10); 1 + 8 + 1 (of 10); 9 + 1 (of 10) (s=26)
		

Crossrefs

Programs

  • PARI
    /* To exclude 0 from sums, change "dn[i]>=0" to "dn[i]>0" */
    { nmx=20; b=10; d = vector(nmx+1); s = vector(nmx+1); for(n=1,nmx+1, dn=digits(n,b); nn=0; for(i=1,#dn,if(dn[i]>=0,nn=nn*b+dn[i])); d[n]=nn; ); for(n=1,nmx, si=1; c=0; until(si>n, nn=0; for(i=1,si,if(s[i]>0,nn+=(d[i]\b^(s[i]-1))%b);if(nn>n,i=si)); if(nn==n,c++); incs();
    ); s[si]=0; print1(c,", ")); break; }
    {incs() = s[1]++; i=1; while(d[i]\b^(s[i]-1)==0, s[i]=0; i++; s[i]++; ); if(i>si,si=i); } \\ Anthony Sand, Aug 19 2014
    A245439(n) = my(X = 'x + O('x^(n+1))); polcoef( prod(i=1,n, 1 + vecsum( apply(t->X^t, digits(i)) ) ), n); \\ Max Alekseyev, Sep 04 2023

Extensions

More terms from Max Alekseyev, Sep 04 2023