A240173 Numbers n such that k^n - 2^k is not prime for any k.
1, 2, 13, 43, 45, 51, 53, 55, 57, 63, 72, 77, 81, 84, 85, 89, 93, 103, 108, 117, 121, 129, 147, 149, 151, 163, 171, 173, 177, 183, 191, 213, 229, 231, 239, 241, 250, 259, 261, 263, 273, 283, 286, 291, 321, 331, 333, 344, 345, 351, 353, 361, 373, 381, 390, 399
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..64
Crossrefs
Cf. A245459.
Programs
-
Python
import sympy def a(n): k = 2 count = 0 while k**n > 2**k: if sympy.isprime(k**n-2**k): count += 1 k += 1 return count n = 1 while n < 1000: if not a(n): print(n, end=', ') n += 1 # Derek Orr, Aug 02 2014
Formula
A245459(a(n)) = 0.
Extensions
a(13)-a(34) from Derek Orr, Aug 02 2014
a(35) onwards from Amiram Eldar, Oct 03 2024
Comments