A245463 Smallest k such that A002522(k) and A002522(k+2n) are successive primes of the form m^2+1.
2, 6, 84, 66, 26, 134, 40, 94, 986, 184, 1524, 716, 864, 1246, 2986, 784, 350, 2174, 4796, 496, 7674, 13136, 3390, 12636, 5880, 9904, 16446, 37410, 6646, 10430, 56774, 31870, 9054, 24606, 12986, 54284, 35000, 124320, 114216, 58576, 88854, 85416, 18854, 3536
Offset: 1
Keywords
Examples
a(3) = 84 because A002522(84)=7057 and A002522(84+2*3)= 8101 are two consecutive primes of the form m^2+1.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..163
Programs
-
Maple
T:=array(1..44): for n from 1 by 2 to 88 do: z:=0:ii:=0: for k from 2 to 10^7 while(z=0) do: p:=k^2+1: if type(p,prime)=false then ii:=ii+1: else if ii=n then printf ( "%d %d \n",(n+1)/2,k-n-1):T[(n+1)/2]:=k-n-1:z:=1: else fi: ii:=0: fi: od: od: print(T):
-
PARI
for(n=1, 44, m=2; until(m==k+2*n, k=m; until(isprime(m^2+1), m++)); print1(k", ")) \\ Jens Kruse Andersen, Jul 22 2014
Comments