A245475 Numbers n such that the sum of digits, sum of squares of digits, and sum of cubes of digits are all prime.
11, 101, 110, 111, 113, 131, 146, 164, 166, 199, 223, 232, 289, 298, 311, 322, 335, 337, 346, 353, 355, 364, 373, 388, 416, 436, 449, 461, 463, 494, 533, 535, 553, 566, 614, 616, 634, 641, 643, 656, 661, 665, 733, 829, 838, 883, 892, 919, 928, 944, 982, 991, 1001, 1010, 1011, 1013, 1031, 1046, 1064, 1066, 1099
Offset: 1
Examples
1^1 + 4^1 + 6^1 = 11 is prime. 1^2 + 4^2 + 6^2 = 53 is prime. 1^3 + 4^3 + 6^3 = 281 is prime. Thus 146, 164, 416, 461, 641, and 614 are members of this sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local L; L:= convert(n,base,10); isprime(convert(L,`+`)) and isprime(convert(map(`^`,L,2),`+`)) and isprime(convert(map(`^`,L,3),`+`)) end proc: select(filter, [$1..2000]); # Robert Israel, Dec 04 2024
-
Mathematica
sdpQ[n_]:=Module[{idn=IntegerDigits[n]},AllTrue[{Total[idn], Total[ idn^2], Total[ idn^3]}, PrimeQ]]; Select[Range[1100],sdpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 06 2018 *)
-
PARI
for(n=1,10^3,d=digits(n);s1=sum(i=1,#d,d[i]);s2=sum(j=1,#d,d[j]^2);s3=sum(k=1,#d,d[k]^3);if(isprime(s1)&&isprime(s2)&&isprime(s3),print1(n,", ")))
Comments