A245479 Numbers n such that the n-th cyclotomic polynomial has a root mod 7.
1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294, 343, 686, 1029, 2058, 2401, 4802, 7203, 14406, 16807, 33614, 50421, 100842, 117649, 235298, 352947, 705894, 823543, 1647086, 2470629, 4941258, 5764801, 11529602, 17294403, 34588806, 40353607, 80707214, 121060821
Offset: 1
Examples
The 3rd cyclotomic polynomial x^2 + x + 1 considered modulo 7 has a root x = 2, so 3 is in the sequence.
References
- Trygve Nagell, Introduction to Number Theory. New York: Wiley, 1951, pp. 164-168.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..500
- Benedict W. J. Irwin A sequence a(n+1) is product over binary components of n, plus 1
- Eric Weisstein, Cyclotomic Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,7).
Programs
-
Mathematica
m = 7; Function[d, Table[d[[k]] m^n, {n, 0, 9}, {k, Length@ d}]]@ Divisors[m - 1] // Flatten (* or *) Rest@ CoefficientList[Series[-x (2 x + 1) (3 x^2 + 1)/(7 x^4 - 1), {x, 0, 40}], x] (* Michael De Vlieger, Jul 25 2016 *) LinearRecurrence[{0,0,0,7},{1,2,3,6},50] (* Harvey P. Dale, Oct 10 2018 *)
-
PARI
for(n=1,10^6,if(#polrootsmod(polcyclo(n),7),print1(n,", "))) /* by definition; rather inefficient. - Joerg Arndt, Jul 28 2014 */
-
PARI
Vec(-x*(2*x+1)*(3*x^2+1)/(7*x^4-1) + O(x^100)) \\ Colin Barker, Jul 30 2014
-
Sage
def A245479(n) : return [6,1,2,3][n%4]*7^((n-1)//4)
Formula
a(n) = 7*a(n-4). G.f.: -x*(2*x+1)*(3*x^2+1) / (7*x^4-1). - Colin Barker, Jul 30 2014
From Benedict W. J. Irwin, Jul 22 2016: (Start)
a(n) appears to satisfy x*Prod_{n>=0} (1 + a(2^n+1)x^(2^n)) = Sum_{n>=1} a(n)x^n.
Then a(n+1)=a(2^x+1)a(2^y+1)a(2^z+1)..., where n=2^x+2^y+2^z+... .
For example,
n=12=2^2+2^3, then a(12+1)=a(2^2+1)*a(2^3+1) i.e. 343=49*7.
n=31=2^0+2^1+2^2+2^3+2^4, then a(31+1)=a(2)*a(3)*a(5)*a(9)*a(17) i.e. 4941258=2*3*7*49*2401.
(End)
Comments