cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245479 Numbers n such that the n-th cyclotomic polynomial has a root mod 7.

Original entry on oeis.org

1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294, 343, 686, 1029, 2058, 2401, 4802, 7203, 14406, 16807, 33614, 50421, 100842, 117649, 235298, 352947, 705894, 823543, 1647086, 2470629, 4941258, 5764801, 11529602, 17294403, 34588806, 40353607, 80707214, 121060821
Offset: 1

Views

Author

Eric M. Schmidt, Jul 23 2014

Keywords

Comments

Numbers of the form d*7^j for d = 1,2,3,6.

Examples

			The 3rd cyclotomic polynomial x^2 + x + 1 considered modulo 7 has a root x = 2, so 3 is in the sequence.
		

References

  • Trygve Nagell, Introduction to Number Theory. New York: Wiley, 1951, pp. 164-168.

Crossrefs

Programs

  • Mathematica
    m = 7; Function[d, Table[d[[k]] m^n, {n, 0, 9}, {k, Length@ d}]]@ Divisors[m - 1] // Flatten (* or *)
    Rest@ CoefficientList[Series[-x (2 x + 1) (3 x^2 + 1)/(7 x^4 - 1), {x, 0, 40}], x] (* Michael De Vlieger, Jul 25 2016 *)
    LinearRecurrence[{0,0,0,7},{1,2,3,6},50] (* Harvey P. Dale, Oct 10 2018 *)
  • PARI
    for(n=1,10^6,if(#polrootsmod(polcyclo(n),7),print1(n,", "))) /* by definition; rather inefficient. - Joerg Arndt, Jul 28 2014 */
    
  • PARI
    Vec(-x*(2*x+1)*(3*x^2+1)/(7*x^4-1) + O(x^100)) \\ Colin Barker, Jul 30 2014
  • Sage
    def A245479(n) : return [6,1,2,3][n%4]*7^((n-1)//4)
    

Formula

a(n) = 7*a(n-4). G.f.: -x*(2*x+1)*(3*x^2+1) / (7*x^4-1). - Colin Barker, Jul 30 2014
From Benedict W. J. Irwin, Jul 22 2016: (Start)
a(n) appears to satisfy x*Prod_{n>=0} (1 + a(2^n+1)x^(2^n)) = Sum_{n>=1} a(n)x^n.
Then a(n+1)=a(2^x+1)a(2^y+1)a(2^z+1)..., where n=2^x+2^y+2^z+... .
For example,
n=12=2^2+2^3, then a(12+1)=a(2^2+1)*a(2^3+1) i.e. 343=49*7.
n=31=2^0+2^1+2^2+2^3+2^4, then a(31+1)=a(2)*a(3)*a(5)*a(9)*a(17) i.e. 4941258=2*3*7*49*2401.
(End)