A245480 Numbers n such that the n-th cyclotomic polynomial has a root mod 11.
1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605, 1210, 1331, 2662, 6655, 13310, 14641, 29282, 73205, 146410, 161051, 322102, 805255, 1610510, 1771561, 3543122, 8857805, 17715610, 19487171, 38974342, 97435855, 194871710, 214358881, 428717762, 1071794405, 2143588810
Offset: 1
Examples
The 5th cyclotomic polynomial x^4 + x^3 + x^2 + x + 1 considered modulo 11 has a root x = 3, so 5 is in the sequence.
References
- Trygve Nagell, Introduction to Number Theory. New York: Wiley, 1951, pp. 164-168.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..500
- Eric Weisstein, Cyclotomic Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,11).
Programs
-
Mathematica
CoefficientList[Series[x(2x+1)(5x^2+1)/(1-11x^4), {x, 0, 20}], x] (* Benedict W. J. Irwin, Jul 24 2016 *) LinearRecurrence[{0,0,0,11},{1,2,5,10},40] (* Harvey P. Dale, Aug 04 2021 *)
-
PARI
for(n=1,10^6,if(#polrootsmod(polcyclo(n),11),print1(n,", "))) /* by definition; rather inefficient. - Joerg Arndt, Jul 28 2014 */
-
PARI
a(n)=11^((n-1)\4)*[10,1,2,5][n%4+1] \\ Charles R Greathouse IV, Jun 11 2015
-
Sage
def A245480(n) : return [10,1,2,5][n%4]*11^((n-1)//4)
Formula
From Benedict W. J. Irwin, Jul 29 2016: (Start)
a(n) = 11*a(n-4).
G.f.: x*(1 + 2*x)*(1 + 5*x^2)/(1 - 11*x^4).
a(n) appears to satisfy x*Prod_{n>=0} (1 + a(2^n+1)x^(2^n)) = Sum_{n>=1} a(n)*x^n.
Then a(n+1) = a(2^x+1)*a(2^y+1)*a(2^z+1)..., where n=2^x+2^y+2^z+... .
For example, n=31=2^0+2^1+2^2+2^3+2^4, then a(31+1)=a(2)*a(3)*a(5)*a(9)*a(17) i.e. 194871710=2*5*11*121*14641.
(End)
Comments