cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245480 Numbers n such that the n-th cyclotomic polynomial has a root mod 11.

Original entry on oeis.org

1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605, 1210, 1331, 2662, 6655, 13310, 14641, 29282, 73205, 146410, 161051, 322102, 805255, 1610510, 1771561, 3543122, 8857805, 17715610, 19487171, 38974342, 97435855, 194871710, 214358881, 428717762, 1071794405, 2143588810
Offset: 1

Views

Author

Eric M. Schmidt, Jul 23 2014

Keywords

Comments

Numbers of the form d*11^j for d=1,2,5,10.

Examples

			The 5th cyclotomic polynomial x^4 + x^3 + x^2 + x + 1 considered modulo 11 has a root x = 3, so 5 is in the sequence.
		

References

  • Trygve Nagell, Introduction to Number Theory. New York: Wiley, 1951, pp. 164-168.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x(2x+1)(5x^2+1)/(1-11x^4), {x, 0, 20}], x] (* Benedict W. J. Irwin, Jul 24 2016 *)
    LinearRecurrence[{0,0,0,11},{1,2,5,10},40] (* Harvey P. Dale, Aug 04 2021 *)
  • PARI
    for(n=1,10^6,if(#polrootsmod(polcyclo(n),11),print1(n,", "))) /* by definition; rather inefficient. - Joerg Arndt, Jul 28 2014 */
    
  • PARI
    a(n)=11^((n-1)\4)*[10,1,2,5][n%4+1] \\ Charles R Greathouse IV, Jun 11 2015
  • Sage
    def A245480(n) : return [10,1,2,5][n%4]*11^((n-1)//4)
    

Formula

From Benedict W. J. Irwin, Jul 29 2016: (Start)
a(n) = 11*a(n-4).
G.f.: x*(1 + 2*x)*(1 + 5*x^2)/(1 - 11*x^4).
a(n) appears to satisfy x*Prod_{n>=0} (1 + a(2^n+1)x^(2^n)) = Sum_{n>=1} a(n)*x^n.
Then a(n+1) = a(2^x+1)*a(2^y+1)*a(2^z+1)..., where n=2^x+2^y+2^z+... .
For example, n=31=2^0+2^1+2^2+2^3+2^4, then a(31+1)=a(2)*a(3)*a(5)*a(9)*a(17) i.e. 194871710=2*5*11*121*14641.
(End)