A245481 Numbers k such that the k-th cyclotomic polynomial has a root mod 13.
1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028, 2197, 4394, 6591, 8788, 13182, 26364, 28561, 57122, 85683, 114244, 171366, 342732, 371293, 742586, 1113879, 1485172, 2227758, 4455516, 4826809, 9653618, 14480427, 19307236, 28960854
Offset: 1
Examples
The 4th cyclotomic polynomial x^2 + 1 considered modulo 13 has a root x = 5, so 4 is in the sequence.
References
- Trygve Nagell, Introduction to Number Theory. New York: Wiley, 1951, pp. 164-168.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..500
- Eric Weisstein, Cyclotomic Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,13).
Programs
-
Mathematica
LinearRecurrence[{0,0,0,0,0,13},{1,2,3,4,6,12},50] (* Harvey P. Dale, Aug 19 2021 *)
-
PARI
for(n=1,10^6,if(#polrootsmod(polcyclo(n),13),print1(n,", "))) /* by definition; rather inefficient. - Joerg Arndt, Jul 28 2014 */
-
PARI
Vec(-x*(12*x^5+6*x^4+4*x^3+3*x^2+2*x+1)/(13*x^6-1) + O(x^100)) \\ Colin Barker, Jul 30 2014
-
PARI
a(n)=[12,1,2,3,4,6][n%6+1]*13^((n-1)\6) \\ Charles R Greathouse IV, Jan 12 2017
-
Sage
def A245481(n) : return [12,1,2,3,4,6][n%6]*13^((n-1)//6)
Formula
a(n) = 13*a(n-6). G.f.: -x*(12*x^5+6*x^4+4*x^3+3*x^2+2*x+1) / (13*x^6-1). - Colin Barker, Jul 30 2014
Comments