cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245481 Numbers k such that the k-th cyclotomic polynomial has a root mod 13.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028, 2197, 4394, 6591, 8788, 13182, 26364, 28561, 57122, 85683, 114244, 171366, 342732, 371293, 742586, 1113879, 1485172, 2227758, 4455516, 4826809, 9653618, 14480427, 19307236, 28960854
Offset: 1

Views

Author

Eric M. Schmidt, Jul 23 2014

Keywords

Comments

Numbers of the form d*13^j for d a divisor of 12.

Examples

			The 4th cyclotomic polynomial x^2 + 1 considered modulo 13 has a root x = 5, so 4 is in the sequence.
		

References

  • Trygve Nagell, Introduction to Number Theory. New York: Wiley, 1951, pp. 164-168.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,13},{1,2,3,4,6,12},50] (* Harvey P. Dale, Aug 19 2021 *)
  • PARI
    for(n=1,10^6,if(#polrootsmod(polcyclo(n),13),print1(n,", "))) /* by definition; rather inefficient. - Joerg Arndt, Jul 28 2014 */
    
  • PARI
    Vec(-x*(12*x^5+6*x^4+4*x^3+3*x^2+2*x+1)/(13*x^6-1) + O(x^100)) \\ Colin Barker, Jul 30 2014
    
  • PARI
    a(n)=[12,1,2,3,4,6][n%6+1]*13^((n-1)\6) \\ Charles R Greathouse IV, Jan 12 2017
  • Sage
    def A245481(n) : return [12,1,2,3,4,6][n%6]*13^((n-1)//6)
    

Formula

a(n) = 13*a(n-6). G.f.: -x*(12*x^5+6*x^4+4*x^3+3*x^2+2*x+1) / (13*x^6-1). - Colin Barker, Jul 30 2014