A245500 Concatenation of multiplicities of prime divisors of highly composite numbers A002182(n).
0, 1, 2, 11, 21, 31, 22, 41, 211, 311, 221, 411, 321, 421, 3111, 2211, 4111, 3211, 4211, 3311, 5211, 4311, 6211, 4221, 32111, 4411, 5221, 42111, 33111, 52111, 43111, 62111, 42211, 53111, 44111, 52211, 63111, 421111, 331111, 521111, 431111, 621111, 422111
Offset: 1
Examples
A002182(4) = 12 = 2^2 * 3^1, thus a(4) = 21; A002182(17) = 2520 = 2^3 * 3^2 * 5^1 * 7^1, thus a(17) = 3211; A002182(220) = 2^10 * 3^4 * 5^3 * 7^2 * 11 * ... * 53 (skipping no primes), thus a(220) cannot be represented using a single decimal place for the multiplicity 10.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..5000 (first 220 terms from _Michael De Vlieger_), Jan 02 2020
- A. Flammenkamp, Highly composite numbers.
- A. Flammenkamp, List of the first 1200 highly composite numbers.
- D. B. Siano and J. D. Siano, "Pwrs of primes" notation from An Algorithm for Generating Highly Composite Numbers
Programs
-
Mathematica
encodePrimeSignature[n_Integer] := Catch[FromDigits[Reverse[IntegerDigits[Apply[Plus, Which[n == 0, Throw["undefined"], n == 1, 0, Max[Last /@ FactorInteger @ n ] > 9, Throw["overflow"], True, Power[10, PrimePi[Abs[#]] - 1]] & /@ Flatten[ConstantArray @@@ FactorInteger[n]] ]]]]]; lst = FoldList[Max, 1, Table[DivisorSigma[0, n], {n, 2, 100000000}]]; Map[encodePrimeSignature, Flatten[Position[lst, #, 1, 1] & /@ Union[lst]]]
-
PARI
apply( A245500(n)=fromdigits(factor(A002182(n))[,2]~), [1..99]) \\ For n >= 8869, fromdigits must be replaced by (s->if(s,eval(concat([Str(e)|e<-s])))). - M. F. Hasler, Jan 03 2020
Extensions
Offset corrected to 1 by M. F. Hasler, Jan 03 2020
Comments