cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245501 Number A(n,k) of endofunctions f on [n] such that f^k(i) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 27, 1, 1, 1, 4, 10, 256, 1, 1, 1, 3, 19, 41, 3125, 1, 1, 1, 4, 12, 110, 196, 46656, 1, 1, 1, 3, 19, 73, 751, 1057, 823543, 1, 1, 1, 4, 10, 116, 556, 5902, 6322, 16777216, 1, 1, 1, 3, 21, 41, 901, 4737, 52165, 41393, 387420489, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 24 2014

Keywords

Examples

			Square array A(n,k) begins:
  1,     1,    1,    1,    1,    1,    1, ...
  1,     1,    1,    1,    1,    1,    1, ...
  1,     4,    3,    4,    3,    4,    3, ...
  1,    27,   10,   19,   12,   19,   10, ...
  1,   256,   41,  110,   73,  116,   41, ...
  1,  3125,  196,  751,  556,  901,  220, ...
  1, 46656, 1057, 5902, 4737, 8422, 1921, ...
		

Crossrefs

Main diagonal gives A245507.

Programs

  • Maple
    with(numtheory):
    A:= (n, k)-> `if`(k=0, 1, `if`(k=1, n^n, n! *coeff(series(
        exp(add((x*exp(x))^d/d, d=divisors(k-1))), x, n+1), x, n))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[0, 1] = 1; A[n_, k_] := If[k==0, 1, If[k==1, n^n, n!*SeriesCoefficient[ Exp[ DivisorSum[k-1, (x*Exp[x])^#/#&]], {x, 0, n}]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)

Formula

A(n,k) = n! * [x^n] exp(Sum_{d|(k-1)} (x*exp(x))^d/d) for k>1, A(n,0)=1, A(n,1)=n^n.