A245512 Records in A245511: smallest m > 1 such that the largest odd number less than m^k is prime for every 0 < k < n, but not for k = n.
2, 4, 5, 9, 279, 15331, 1685775, 205670529, 129734299239, 148778622108171
Offset: 1
Examples
a(3) = 5 because the odd numbers preceding 5^k, for k = 1,2,3, are 3, 23 and 123, and the first one which is not a prime corresponds to k = 3. Moreover, 5 is the smallest natural having this property.
Programs
-
Mathematica
f[n_] := Block[{d = If[ OddQ@ n, 2, 1], m = 1, t}, While[t = n^m - d; EvenQ@ t || PrimeQ@ t, m++]; m]; t = Table[0, {25}]; k = 2; While[k < 210000000, a = f@ k; If[ t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++]; t (* Robert G. Wilson v, Aug 04 2014 *)
-
PARI
a(n) = for(k=1,10^6,c=0;for(i=1,n-1,if(isprime(k^i-(k%2)-1),c++));if(c==n-1&&!isprime(k^n-(k%2)-1),return(k))) n=1;while(n<10,print1(a(n),", ");n++) \\ Derek Orr, Jul 27 2014
Extensions
a(4) corrected by Derek Orr, Jul 27 2014
a(8) from Robert G. Wilson v, Aug 04 2014
a(9) from Kellen Shenton, Sep 13 2022
a(10) from Kellen Shenton, Sep 18 2022
Comments