A245525 Unique integer r with -prime(n)/2 < r <= prime(n)/2 such that p(n) == r (mod prime(n)), where p(.) is the partition function given by A000041.
1, -1, -2, -2, -4, -2, -2, 3, 7, 13, -6, 3, 19, 6, -12, 19, 2, 19, 21, -12, -11, -25, 10, -27, 18, 12, 23, -27, -13, -46, -16, -35, 5, -61, -17, 8, -29, -65, -44, -30, 12, -40, 40, -95, 90, 88, 53, 93, 97, -42, -47, 47, 2, 117, -16, 34, 27, 51, -11, 108, -24, 115, -29, 30, -32, -90, -87, 141, 24, 131, -166, -115, -96, -111, 84, -191, 163, -156, 115, 78
Offset: 1
Keywords
Examples
a(20) = -12 since p(20) = 627 == -12 (mod prime(20)=71).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
rMod[m_,n_]:=Mod[m,n,-(n-1)/2] a[n_]:=rMod[PartitionsP[n],Prime[n]] Table[a[n],{n,1,80}]
Comments