A245532 Decimal expansion of b_3, a constant associated with the 3rd Du Bois Reymond constant.
0, 1, 7, 3, 2, 7, 1, 4, 0, 5, 4, 7, 3, 6, 6, 9, 9, 1, 2, 8, 8, 0, 8, 3, 1, 8, 9, 8, 6, 9, 0, 6, 7, 3, 9, 9, 0, 7, 0, 9, 5, 8, 3, 6, 0, 6, 3, 6, 4, 3, 2, 1, 4, 5, 1, 3, 0, 4, 9, 2, 1, 6, 3, 3, 6, 8, 3, 4, 6, 0, 0, 3, 2, 4, 2, 1, 6, 7, 2, 6, 3, 1, 2, 7, 4, 1, 2, 3, 4, 3, 8, 3, 0, 6, 2, 0, 3, 9, 5, 0, 3, 2
Offset: 0
Examples
0.017327140547366991288083189869067399070958360636432145130492163368346...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.12 Du Bois Reymond Constants, pp. 238-239.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, du Bois-Reymond Constants.
Crossrefs
Cf. A224196.
Programs
-
Maple
Digits:=100: evalf((-1/4)*(exp(3)-3*exp(1)-12)); # Wesley Ivan Hurt, Jul 26 2014
-
Mathematica
b3 = (-1/4)*(E^3 - 3*E - 12); Join[{0}, RealDigits[b3, 10, 101] // First]
-
PARI
(12+3*exp(1)-exp(3))/4 \\ Charles R Greathouse IV, Jul 25 2014
Formula
b_3 = (-1/4)*(e^3 - 3*e - 12).
Equals 2*sum((-1)^(n+1)/(1+xi(n)^2)^(3/2), (n=1..infinity)), where xi(n) is the n-th positive solution to tan(x)=x.