A245558 Square array read by antidiagonals: T(n,k) = number of n-tuples of nonnegative integers (u_0,...,u_{n-1}) satisfying Sum_{j=0..n-1} j*u_j == 1 mod n and Sum_{j=0..n-1} u_j = m.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 7, 8, 7, 3, 1, 1, 4, 9, 14, 14, 9, 4, 1, 1, 4, 12, 20, 25, 20, 12, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ... 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, ... 1, 2, 5, 8, 14, 20, 30, 40, 55, 70, ... 1, 3, 7, 14, 25, 42, 66, 99, 143, 200, ... 1, 3, 9, 20, 42, 75, 132, 212, 333, 497, ... 1, 4, 12, 30, 66, 132, 245, 429, 715, 1144, ... 1, 4, 15, 40, 99, 212, 429, 800, 1430, 2424, ... 1, 5, 18, 55, 143, 333, 715, 1430, 2700, 4862, ... 1, 5, 22, 70, 200, 497, 1144, 2424, 4862, 9225, ... ... Reading by antidiagonals, we get: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 2, 3, 2, 1; 1, 3, 5, 5, 3, 1; 1, 3, 7, 8, 7, 3, 1; 1, 4, 9, 14, 14, 9, 4, 1; 1, 4, 12, 20, 25, 20, 12, 4, 1; 1, 5, 15, 30, 42, 42, 30, 15, 5, 1; 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1; 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1; ...
Links
- Taylor Brysiewicz, Necklaces count polynomial parametric osculants, arXiv:1807.03408 [math.AG], 2018.
- A. Elashvili, M. Jibladze, Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. (N.S.) 9 (1998), no. 2, 233-238. MR1691428 (2000c:13006).
- A. Elashvili, M. Jibladze, D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), no. 2, 173-188. MR1719140 (2000j:05009). See p. 174.
- M. L. Fredman, A symmetry relationship for a class of partitions, J. Combinatorial Theory Ser. A 18 (1975), 199-202.
- I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory, Ser. A, 64, 1993, 189-215, Theorem 9.4.
- J. E. Iglesias, Enumeration of closest-packings by the space group: a simple approach, Z. Krist. 221 (2006) 237-245, eq. (5).
Crossrefs
Programs
-
Maple
# To produce the first 10 rows and columns (as on page 174 of the Elashvili et al. 1999 reference): with(numtheory): cnk:=(n,k) -> add(mobius(n/d)*d, d in divisors(gcd(n,k))); anmk:=(n,m,k)->(1/(n+m))*add( cnk(d,k)*binomial((n+m)/d,n/d), d in divisors(gcd(n,m))); # anmk(n,m,k) is the value of a_k(n,m) as in Theorem 1, Equation (4), of the Elashvili et al. 1999 reference. r2:=(n,k)->[seq(anmk(n,m,k),m=1..10)]; for n from 1 to 10 do lprint(r2(n,1)); od:
-
Mathematica
rows = 12; cnk[n_, k_] := Sum[MoebiusMu[n/d] d, {d , Divisors[GCD[n, k]]}]; anmk[n_, m_, k_] := (1/(n+m)) Sum[cnk[d, k] Binomial[(n+m)/d, n/d], {d, Divisors[GCD[n, m]]}]; r2[n_, k_] := Table[anmk[n, m, k], {m, 1, rows}]; T = Table[r2[n, 1], {n, 1, rows}]; Table[T[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 05 2018, from Maple *)
Comments