A245571 a(n) is the smallest prime number with at least two digits formed by the concatenation of the subsequent digits of Pi, starting at the n-th digit, ignoring the decimal point.
31, 14159, 41, 1592653, 59, 9265358979323, 26535897932384626433832795028841971693993751058209, 653, 53, 35897, 5897, 89, 97, 79, 9323, 32384626433832795028841971693993751058209749445923078164062862089986280348253421, 23, 38462643383
Offset: 1
Examples
a(4) = 1592653, because starting at the 4th digit in the expansion, the smallest substring of the digits of Pi forming a prime number is 3.14|1592653|589...
Programs
-
Maple
N:= 1000: # to use up to N+1 digits of pi. nmax:= 30: # to get up to a(nmax), if possible. S:= floor(10^N*Pi): L:= ListTools:-Reverse(convert(S,base,10)): for n from 1 to nmax do p:= L[n]; for k1 from n+1 to N+1 do p:= 10*p + L[k1]; if isprime(p) then break fi od: if k1 > N+1 then A[n]:= "Ran out of digits"; break else A[n]:= p end od: seq(A[i],i=1..n-1); # Robert Israel, Aug 27 2014
-
Python
from sympy.mpmath import * from sympy import isprime def A245571(n): mp.dps = 1000+n s = nstr(pi,mp.dps)[:-1].replace('.','')[n-1:] for i in range(len(s)-1): p = int(s[:i+2]) if p > 10 and isprime(p): return p else: return 'Ran out of digits' # Chai Wah Wu, Sep 16 2014, corrected Chai Wah Wu, Sep 24 2014
Comments