cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245581 a(n) = (5 * (1 + (-1)^(1 + n)) + 2 * n^2) / 4.

Original entry on oeis.org

0, 3, 2, 7, 8, 15, 18, 27, 32, 43, 50, 63, 72, 87, 98, 115, 128, 147, 162, 183, 200, 223, 242, 267, 288, 315, 338, 367, 392, 423, 450, 483, 512, 547, 578, 615, 648, 687, 722, 763, 800, 843, 882, 927, 968, 1015, 1058, 1107, 1152, 1203, 1250, 1303, 1352, 1407
Offset: 0

Views

Author

Peter Luschny, Jul 26 2014

Keywords

Crossrefs

Programs

  • Magma
    [(5*(1+(-1)^(1+n))+2*n^2) / 4: n in [0..60]]; // Vincenzo Librandi, Jul 27 2014
  • Maple
    A245581 := n -> (5*(1+(-1)^(1+n))+2*n^2)/4; seq(A245581(n), n=0..53);
  • Mathematica
    CoefficientList[Series[-x (3 x^2 - 4 x + 3)/((x - 1)^3 (x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 27 2014 *)
  • PARI
    concat(0, Vec(-x*(3*x^2-4*x+3)/((x-1)^3*(x+1)) + O(x^100))) \\ Colin Barker, Jul 26 2014
    
  • Sage
    def A():
        a, b, c, d = 0, 3, 2, 7
        while True:
            yield a
            a, b, c, d = b, c, d, a + 2*(d - b)
    A245581 = A(); [next(A245581) for n in range(54)]
    

Formula

a(n) = a(-n).
a(2*n+1) = A097080(n+1).
a(2*n+6) = A245578(2*n+4) = 2*A209350(2*n+4).
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). - Colin Barker, Jul 26 2014
G.f.: -x*(3*x^2-4*x+3) / ((x-1)^3*(x+1)). - Colin Barker, Jul 26 2014
E.g.f.: (exp(x)*x*(x+1) + 5*sinh(x))/2. - Peter Luschny, Aug 04 2014