cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245584 Let f(m) put the leftmost digit of the positive integer m at its end; a(n) is the sequence of all positive integers m with f^2(m)=f(m^2).

Original entry on oeis.org

1, 2, 3, 12, 122, 1222, 12222, 122222, 1222222, 12222222, 122222222
Offset: 1

Views

Author

Reiner Moewald, Jul 26 2014

Keywords

Examples

			122^2=14884 and 221^2=48841.
		

Crossrefs

Programs

  • Mathematica
    f[m_Integer] := Module[{w}, w := IntegerDigits[m]; FromDigits[Rest[AppendTo[w, First[w]]]]]; a245584[n_Integer] :=
    Select[Range[n], If[f[#]^2 == f[#^2] && ! Mod[#, 10] == 0, True, False] &]; a245584[10^5] (* Michael De Vlieger, Aug 17 2014 *)
  • Python
    import math
    max = 10000
    print('los')
    for n in range(1, max):
       nst = str(n*n)
       nnewst = nst[1:] + nst[0]
       d = int(nnewst)
       e = int(math.sqrt(d))
       est = str(e)
       enewst = est[len(est)-1] + est[:len(est)-1]
       if (e * e == d) and (nnewst[0] != "0") and (str(n) == enewst):
          print(n, '  ',  e)
    print('End.')

Formula

One can easily prove that all integers of the form 12...2 are elements of the sequence.