A245584 Let f(m) put the leftmost digit of the positive integer m at its end; a(n) is the sequence of all positive integers m with f^2(m)=f(m^2).
1, 2, 3, 12, 122, 1222, 12222, 122222, 1222222, 12222222, 122222222
Offset: 1
Examples
122^2=14884 and 221^2=48841.
Programs
-
Mathematica
f[m_Integer] := Module[{w}, w := IntegerDigits[m]; FromDigits[Rest[AppendTo[w, First[w]]]]]; a245584[n_Integer] := Select[Range[n], If[f[#]^2 == f[#^2] && ! Mod[#, 10] == 0, True, False] &]; a245584[10^5] (* Michael De Vlieger, Aug 17 2014 *)
-
Python
import math max = 10000 print('los') for n in range(1, max): nst = str(n*n) nnewst = nst[1:] + nst[0] d = int(nnewst) e = int(math.sqrt(d)) est = str(e) enewst = est[len(est)-1] + est[:len(est)-1] if (e * e == d) and (nnewst[0] != "0") and (str(n) == enewst): print(n, ' ', e) print('End.')
Formula
One can easily prove that all integers of the form 12...2 are elements of the sequence.