A245589 Primes which are the average of the two adjacent primes and also of the two adjacent squarefree numbers.
53, 593, 1747, 2287, 4013, 4409, 5563, 6317, 8117, 10657, 10853, 11933, 12547, 12583, 12653, 15161, 16937, 17047, 17851, 18341, 19603, 19949, 20107, 22051, 26693, 31051, 32993, 35851, 35911, 39113, 42209, 42533, 44041, 46889, 47527, 48259, 50417, 51461
Offset: 1
Keywords
Examples
53 is in this sequence because 53 = prime(16) = (prime(15) + prime(17))/2 = (47 + 59)/2 and 53 = squarefree(33) = (squarefree(32) + squarefree(34))/2 = (51 + 55)/2.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
Primes:= select(isprime,[$1..10^5]): Sqfree:= select(numtheory:-issqrfree,[$1..10^5]): A:= NULL: for i from 2 to nops(Primes)-1 do if Primes[i] = (Primes[i+1]+Primes[i-1])/2 then member(Primes[i],Sqfree,'j'); if Primes[i] = (Sqfree[j-1]+Sqfree[j+1])/2 then A:= A,Primes[i] fi fi od: A; # Robert Israel, Aug 21 2014
-
PARI
maxp=60000; p=[]; my(v=primes(maxp)); for(k=2, #v-1, if(2*v[k] == v[k-1]+v[k+1], p=concat(p, v[k]))); p; v = select(n->issquarefree(n), vector(maxp, n, n)); s=[]; for(k=2, #v-1, if(2*v[k] == v[k-1]+v[k+1], s=concat(s, v[k]))); s; setintersect(p, s) \\ Colin Barker, Aug 07 2014
Extensions
Missing term (16937) inserted by Colin Barker, Aug 07 2014
Comments