cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A240169 Numbers n such that (6n)^3 is the sum of a twin prime pair.

Original entry on oeis.org

1, 29, 65, 81, 99, 136, 165, 174, 176, 191, 200, 266, 295, 301, 319, 346, 351, 370, 400, 411, 431, 434, 436, 456, 491, 494, 526, 541, 599, 651, 676, 714, 746, 790, 924, 956, 991, 1011, 1131, 1161, 1194, 1259, 1274, 1280, 1304, 1374, 1550, 1641, 1644, 1649, 1714, 1715, 1739, 1804, 1811, 1814, 1830, 1879, 1941, 2000
Offset: 1

Views

Author

Zak Seidov, Aug 02 2014

Keywords

Comments

No terms end with 2, 3, 7, 8. Minimal differences are 1; e,g., a(52) - a(51) = 1715 - 1714. There are no three consecutive terms with common difference 1.
Distribution of last digits for first 61000 terms: W(0..9) = (10190, 10162, 0, 0, 10178, 10222, 10027, 0, 0, 10221).
For "existing" digits distribution is rather uniform.

Examples

			m = 1: (6m)^3 = 216 = 107 + 109, m = 29: (6m)^3 = 5268024 = 2634011 + 2634013.
		

Crossrefs

Cf. A245591.

Programs

  • Maple
    select(n -> isprime(108 * n^3 - 1) and isprime(108 * n^3 + 1), [$1..1000]); # Robert Israel, Aug 03 2014
  • Mathematica
    Select[Range[1000], PrimeQ[216#^3/2 - 1] && PrimeQ[216#^3/2 + 1] &] (* Alonso del Arte, Aug 02 2014 *)
  • PARI
    N=2*10^3; for(k=1,N,p=216*k^3; if(isprime(p/2-1)&&isprime(1+p/2), print1(k, ", ")))

Formula

a(n) = (1/6)*A245591(n+1)^(1/3).

A119767 Perfect powers which are the sum of twin prime pairs.

Original entry on oeis.org

8, 36, 144, 216, 1764, 2304, 5184, 7056, 8100, 30276, 41616, 69696, 93636, 138384, 166464, 207936, 224676, 279936, 298116, 352836, 360000, 412164, 562500, 725904, 777924, 876096, 944784, 956484, 1077444, 1299600, 1468944, 1617984, 1920996, 2160900, 2286144, 2304324, 2509056
Offset: 1

Views

Author

Walter Kehowski, Jun 18 2006

Keywords

Comments

Since twin primes greater than (3,5) are either occur as (5,7) mod 12 or (11,1) mod 12, all sums of such twin primes are divisible by 12. Thus all powers are divisible by 12 and are best looked at in base 12. For example, a(3) = 5E + 61 = 100, where E is eleven.

Examples

			8 = 2^3 = 3 + 5 (twin primes). Thus 8 is a member of this sequence.
36 = 6^2 = 17 + 19 (twin primes). Thus 36 is a member of this sequence.
a(3) = 71 + 73 = 144.
		

Crossrefs

Programs

  • Maple
    egcd := proc(n::nonnegint) local L; if n=0 or n=1 then n else L:=ifactors(n)[2]; L:=map(z->z[2],L); igcd(op(L)) fi end: L:=[]: for w to 1 do for x from 1 to 2*12^2 do s:=6*x; for r from 2 to 79 do t:=s^r; if egcd(s)=1 and andmap(isprime,[(t-2)/2,(t+2)/2]) then print((t-2)/2,(t+2)/2,t)); L:=[op(L),[(t-2)/2,(t+2)/2,t]]; fi; od od od; L:=sort(L,(a,b)->a[1]z[3],L);
  • Mathematica
    Lim=2600000;ts=Select[Prime[Range[PrimePi[Lim]]], PrimeQ[# + 2] &]2+2;pp=Join[{1}, Select[Range[Lim], GCD@@FactorInteger[#][[All, 2]]>1&]] ;s={};Do[ If[MemberQ[ pp,ts[[n]]],AppendTo[s,ts[[n]]]] ,{n,Length[ts]}];s (* James C. McMahon, Sep 18 2024 *)
  • PARI
    a(N) = for(n=1,N,if(ispower(n),if(nextprime(n/2)-precprime(n/2)==2&&precprime(n/2)+nextprime(n/2)==n,print1(n,", ")))) \\ vary the program's range for any N; Derek Orr, Jul 27 2014

Extensions

R. J. Mathar pointed out that 8 was missing. Once corrected, the old A245591 could be merged into this entry. - N. J. A. Sloane, Jul 30 2014
Showing 1-2 of 2 results.