A245595 Unique integer r with -prime(n)/2 < r <= prime(n)/2 such that S(n) == r (mod prime(n)), where S(n) is the large Schroeder number A006318(n).
0, 0, 2, -1, -2, -1, 7, -5, -5, 11, 10, -11, 11, 12, 2, 17, -2, 19, -15, -26, 33, 17, -22, -11, 18, 8, 18, -27, 17, 51, -37, -34, 28, -4, 66, -37, -69, -58, 45, -81, -20, -86, -19, 17, -12, -30, 35, -32, 5, -11, -8, -45, 12, -111, -28, -71, 76, 59, 102, -25
Offset: 1
Keywords
Examples
a(5) = -2 since S(5) = 394 == -2 (mod prime(5)=11).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
rMod[m_,n_]:=Mod[m,n,-(n-1)/2] S[n_]:=Sum[Binomial[n+k,2k]*Binomial[2k,k]/(k+1),{k,0,n}] a[n_]:=rMod[S[n],Prime[n]] Table[a[n],{n,1,60}]
Comments