A245664 Prime-partitionable numbers a(n) for which there exists a 2-partition of the set of primes < a(n) that has one subset containing two primes only.
16, 34, 36, 66, 70, 78, 88, 92, 100, 120, 124, 144, 154, 160, 162, 186, 210, 216, 248, 250, 256, 260, 262, 268, 300, 330, 336, 340, 342, 366, 378, 394, 396, 404, 428, 474, 484, 486, 512, 520, 538, 552, 574, 582, 630, 636, 640, 696, 700, 706, 708, 714, 718, 722
Offset: 1
Keywords
Examples
a(1) = 16 because A059756(1) = 16 and the 2-partition {5, 11}, {2, 3, 7, 13} of the set of primes < 16 demonstrates it.
Links
- Christopher Hunt Gribble, Table of n, a(n) for n = 1..145
- Christopher Hunt Gribble, Demonstrating 2-partitions.
- Christopher Hunt Gribble, Conjectured sequence: 20000 terms
- Christopher Hunt Gribble, MAPLE program generating {a(n)}.
- Christopher Hunt Gribble, MAPLE program generating 20000 terms of conjectured sequence.
- W. Holsztynski, R. F. E. Strube, Paths and circuits in finite groups, Discr. Math. 22 (1978) 263-272.
- R. J. Mathar and M. F. Hasler, Is 52 prime-partitionable?, Seqfan thread (Jun 29 2014), arXiv:1510.07997
- W. T. Trotter, Jr. and Paul Erdős, When the Cartesian product of directed cycles is Hamiltonian, J. Graph Theory 2 (1978) 137-142 DOI:10.1002/jgt.3190020206.
Programs
-
Maple
See Gribble links referring to "MAPLE program generating {a(n)}" and "MAPLE program generating 20000 terms of conjectured sequence."
-
PARI
prime_part(n)= { my (P = primes(primepi(n-1))); for (k1 = 2, #P - 1, for (k2 = 1, k1 - 1, mask = 2^k1 + 2^k2; P1 = vecextract(P, mask); P2 = setminus(P, P1); for (n1 = 1, n - 1, bittest(n - n1, 0) || next; setintersect(P1, factor(n1)[,1]~) && next; setintersect(P2, factor(n-n1)[,1]~) && next; next(2) ); print(n, ", "); ); ); } forstep(m=2,2000,2,prime_part(m));
Comments