A249302 Prime-partitionable numbers a(n) for which there exists a 2-partition of the set of primes < a(n) that has a smallest subset containing three primes only.
22, 130, 222, 246, 280, 286, 288, 320, 324, 326, 356, 416, 426, 454, 470, 494, 516, 528, 556, 590, 612, 634, 670, 690, 738, 746, 804, 818, 836, 838, 870, 900, 902, 904, 922, 936, 1002, 1026, 1074, 1106, 1116, 1140, 1144, 1150, 1206, 1208, 1262, 1264, 1326, 1338
Offset: 1
Keywords
Examples
a(1) = 22 because A059756(2) = 22 and both the 2-partitions {3, 13, 19}, {2, 3, 11, 13, 19} and {5, 7, 17}, {2, 5, 7, 11, 17} of the set of primes < 22 demonstrate it.
Links
- Christopher Hunt Gribble, Table of n, a(n) for n = 1..77
- Christopher Hunt Gribble, Prime-partitionable numbers with min(#P1)=3
- W. Holsztynski, R. F. E. Strube, Paths and circuits in finite groups, Discr. Math. 22 (1978) 263-272.
- R. J. Mathar and M. F. Hasler, Is 52 prime-partitionable?, Seqfan thread (Jun 29 2014), arXiv:1510.07997
- W. T. Trotter, Jr. and Paul Erdős, When the Cartesian product of directed cycles is Hamiltonian, J. Graph Theory 2 (1978) 137-142 DOI:10.1002/jgt.3190020206.
Programs
-
PARI
prime_part(n)= { my (P = primes(primepi(n-1))); for (k1 = 2, #P - 1, for (k2 = 1, k1 - 1, for (k3 = 1, k2 - 1, mask = 2^k1 + 2^k2 + 2^k3; P1 = vecextract(P, mask); P2 = setminus(P, P1); for (n1 = 1, n - 1, bittest(n - n1, 0) || next; setintersect(P1, factor(n1)[,1]~) && next; setintersect(P2, factor(n-n1)[,1]~) && next; next(2) ); print1(n, ", "); ); ); ); } # PP = {{2x, x = 1:1000} - {A245664(n), 1:145}} PP=[2, 4, 6, 8, 10, 12, 14, 18, 20, 22, 24, 26, 28, 30, \ 32, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, \ ... 1980, 1984, 1986, 1988, 1990, 1994, 1996, 1998, 2000]; for(m=1,#PP,prime_part(PP[m]));
Comments