cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245677 Numerator of sum of fractions A182972(k) / A182973(k) such that A182972(k) + A182973(k) = n.

Original entry on oeis.org

1, 1, 11, 1, 79, 26, 339, 34, 5297, 62, 69071, 1165, 11723, 9844, 471181, 2625, 8960447, 73244, 8231001, 243757, 1031626241, 151100, 4178462515, 2651758, 10396147563, 11843614, 64166447971, 362476, 1989542332021, 97275764008, 1830230212061, 57286319768
Offset: 3

Views

Author

Reinhard Zumkeller, Jul 30 2014

Keywords

Comments

A182972(n) and A182973(n) provide an enumeration of positive rationals < 1 arranged by increasing sum of numerator and denominator then by increasing numerator;
a(n) = numerator(sum(A182972(k)/A182973(k): k such that A182972(k)+A182973(k)=n));
A245718(n) = floor(a(n)/A245678(n)).

Examples

			.     |  (num, den) = (A182973, A182973) | num(sum)| den(sum)|   [sum]
.   n |  num/den,   num + den = n        | A245677 | A245678 | A245718
. ----+----------------------------------+---------+---------+--------
.   3 |  1/2                             |       1 |       2 |       0
.   4 |  1/3                             |       1 |       3 |       0
.   5 |  1/4, 2/3                        |      11 |      12 |       0
.   6 |  1/5                             |       1 |       5 |       0
.   7 |  1/6, 2/5, 3/4                   |      79 |      60 |       1
.   8 |  1/7, 3/5                        |      26 |      35 |       0
.   9 |  1/8, 2/7, 4/5                   |     339 |     280 |       1
.  10 |  1/9, 3/7                        |      34 |      63 |       0
.  11 |  1/10, 2/9, 3/8, 4/7, 5/6        |    5297 |    2520 |       2
.  12 |  1/11, 5/7                       |      62 |      77 |       0
.  13 |  1/12, 2/11, 3/10, 4/9, 5/8, 6/7 |   69071 |   27720 |       2
.  14 |  1/13, 3/11, 5/9                 |    1165 |    1287 |       0
.  15 |  1/14, 2/13, 4/11, 7/8           |   11723 |    8008 |       1
.  16 |  1/15, 3/13, 5/11, 7/9           |    9844 |    6435 |       1 .
		

Crossrefs

Cf. A245678 (denominator), A182972, A182973, A245718.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a245677 n = numerator $ sum
       [num % den | num <- [1 .. div n 2], let den = n - num, gcd num den == 1]