A245682 Numbers x whose digits can be permuted to produce more than a single multiple of x.
123876, 142857, 153846, 230769, 285714, 1028574, 1218753, 1238760, 1239876, 1246878, 1294857, 1402857, 1420785, 1425897, 1428507, 1428570, 1428597, 1428705, 1429857, 1485792, 1492857, 1538460, 1539846, 1570284, 1584297, 2300769, 2307690, 2307699, 2309769, 2857014, 2857140, 2859714, 2985714, 10028574, 10178649
Offset: 1
Examples
Two permutations of 123876 are 371628, 867132 and 371628 / 123876 = 3, 867132 / 123876 = 7. Five permutations of 142857 are 285714, 428571, 571428, 714285, 857142 and 285714 / 142857 = 2, 428571 / 142857 = 3, 571428 / 142857 = 4, 714285 / 142857 = 5, 857142 / 142857 = 6.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..200
Programs
-
Maple
P:=proc(q) local a,b,c,i,j,k,n,t; for n from 1 to q do a:=n; b:=[]; while a>0 do b:=[a mod 10,op(b)]; a:=trunc(a/10); od; t:=0; for i from 2 to 9 do a:=i*n; c:=[]; while a>0 do c:=[a mod 10,op(c)]; a:=trunc(a/10); od; if sort(b)=sort(c) then t:=t+1; fi; if t>1 then print(n); break; fi; od; od; end: P(10^10); # Alternative N:= 10: # get a(1) to a(N) count:= 0: for x from 10 while count < N do M:= 10^(ilog10(x)+1)-1; L:= sort(convert(x,base,10)); mults:= 0; for i from 2 to floor(M/x) do Lp:= sort(convert(i*x,base,10)); if Lp = L then mults:= mults+1; if mults = 2 then count:= count+1; A[count]:= x; print(x); break; fi fi od od: seq(A[i],i=1..count); # Robert Israel, Jul 29 2014
-
PARI
for(n=1,10^8,d=vecsort(digits(n));p=0;for(k=2,9,dd=vecsort(digits(n*k));if(d==dd,p++));if(p>1,print1(n,", "))) \\ faster program Derek Orr, Jul 29 2014
-
Python
import itertools from itertools import permutations for n in range(1,10**8): plist = list(permutations(str(n))) count = 0 lst = [] for i in plist: num = '' for j in range(len(i)): num += i[j] if int(num)%n==0 and int(num)/n > 1: if int(num) not in lst: lst.append(int(num)) count += 1 if count > 1: print(n,end=', ') # Derek Orr, Jul 29 2014
Extensions
a(7) to a(10) from Robert Israel, Jul 29 2014
a(11) - a(35) from Derek Orr, Jul 29 2014
Comments