A245688 Numbers n such that n^2 + 1 is the product of three distinct Fibonacci numbers > 1.
47, 99, 123, 322, 843, 2207, 5778, 15075, 15127, 39603, 103682, 271443, 710647, 1860498, 4870847, 12752043, 33385282, 87403803, 228826127, 599074578, 1568397607, 4106118243, 10749957122, 28143753123, 73681302247, 192900153618, 505019158607, 1322157322203
Offset: 1
Examples
99 is in the sequence because 99^2+1 = 9802 = 2*13*377 where 2, 13 and 377 are three Fibonacci numbers, but 99 is not a Lucas number. 15075 is in the sequence because 15075^2+1 = 13*89*196418 where 13, 89 and 196418 are three Fibonacci numbers, but 15075 is not a Lucas number.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(combinat,fibonacci):with(numtheory):nn:=200:lst:={}:T:=array(1..nn): for n from 1 to nn do: T[n]:=fibonacci(n): od: for p from 1 to nn-1 do: for q from p+1 to nn-1 do: for r from q+1 to nn-1 do: f:=T[p]*T[q]*T[r]-1:x:=sqrt(f): if x=floor(x)and T[p]<>1 then lst:=lst union {x}: else fi: od: od: od: print(lst):
Formula
Empirical g.f.: x*(9297*x^9-24320*x^8-52*x^7+52*x^3-127*x^2-42*x+47) / (x^2-3*x+1). - Colin Barker, Aug 13 2014
Extensions
Doubtful link, formula and PARI code deleted by Colin Barker, Jul 31 2014
Comments