cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245693 Number T(n,k) of permutations on [n] that are self-inverse on [k] but not on [k+1]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 12, 2, 0, 0, 10, 72, 18, 4, 0, 0, 26, 480, 120, 36, 8, 0, 0, 76, 3600, 840, 264, 84, 20, 0, 0, 232, 30240, 6480, 1920, 648, 216, 52, 0, 0, 764, 282240, 55440, 15120, 4920, 1776, 612, 152, 0, 0, 2620, 2903040, 524160, 131040, 39600, 13920, 5232, 1848, 464, 0, 0, 9496
Offset: 0

Views

Author

Alois P. Heinz, Jul 29 2014

Keywords

Comments

T(n,k) counts permutations p:{1,...,n}-> {1,...,n} with p(p(i))=i for all i in {1,...,k} and p(p(k+1))<>k+1 if k

Examples

			Triangle T(n,k) begins:
0 :      1;
1 :      0,    1;
2 :      0,    0,    2;
3 :      2,    0,    0,   4;
4 :     12,    2,    0,   0,  10;
5 :     72,   18,    4,   0,   0, 26;
6 :    480,  120,   36,   8,   0,  0, 76;
7 :   3600,  840,  264,  84,  20,  0,  0, 232;
8 :  30240, 6480, 1920, 648, 216, 52,  0,   0, 764;
		

Crossrefs

Column k=0 give A062119(n-1) for n>1.
Row sums give A000142.
Main diagonal gives A000085.
Cf. A245692 (the same for endofunctions).

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
    H:= (n, k)-> add(binomial(n-k, i)*binomial(k, i)*i!*
                 g(k-i)*(n-k-i)!, i=0..min(k, n-k)):
    T:= (n, k)-> H(n, k) -H(n, k+1):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    g[n_] := g[n] = If[n < 2, 1, g[n - 1] + (n - 1)*g[n - 2]];
    H[n_, k_] := Sum[Binomial[n - k, i]*Binomial[k, i]*i!*
         g[k - i]*(n - k - i)!, {i, 0, Min[k, n - k]}];
    T[n_, k_] := H[n, k] - H[n, k + 1];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 10 2021, after Alois P. Heinz *)

Formula

T(n,k) = H(n,k) - H(n,k+1) with H(n,k) = Sum_{i=0..min(k,n-k)} C(n-k,i) * C(k,i) * i! * A000085(k-i) * (n-k-i)!.