cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245702 Permutation of natural numbers: a(1) = 1, a(2n) = A014580(a(n)), a(2n+1) = A091242(a(n)), where A014580(n) = binary code for n-th irreducible polynomial over GF(2) and A091242(n) = binary code for n-th reducible polynomial over GF(2).

Original entry on oeis.org

1, 2, 4, 3, 5, 11, 8, 7, 6, 13, 9, 47, 17, 31, 14, 25, 12, 19, 10, 59, 20, 37, 15, 319, 62, 87, 24, 185, 42, 61, 21, 137, 34, 55, 18, 97, 27, 41, 16, 415, 76, 103, 28, 229, 49, 67, 22, 3053, 373, 433, 79, 647, 108, 131, 33, 1627, 222, 283, 54, 425, 78, 109, 29, 1123, 166, 203, 45, 379, 71, 91, 26, 731, 121, 145, 36, 253, 53, 73, 23
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Crossrefs

Inverse: A245701.
Similar entanglement permutations: A193231, A227413, A237126, A243288, A245703, A245704.

Programs

  • PARI
    allocatemem(123456789);
    a014580 = vector(2^18);
    a091242 = vector(2^22);
    isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
    i=0; j=0; n=2; while((n < 2^22), if(isA014580(n), i++; a014580[i] = n, j++; a091242[j] = n); n++)
    A245702(n) = if(1==n, 1, if(0==(n%2), a014580[A245702(n/2)], a091242[A245702((n-1)/2)]));
    for(n=1, 383, write("b245702.txt", n, " ", A245702(n)));
    
  • Scheme
    ;; With memoizing definec-macro.
    (definec (A245702 n) (cond ((< n 2) n) ((even? n) (A014580 (A245702 (/ n 2)))) (else (A091242 (A245702 (/ (- n 1) 2))))))

Formula

a(1) = 1, a(2n) = A014580(a(n)), a(2n+1) = A091242(a(n)).
As a composition of related permutations:
a(n) = A245703(A227413(n)).
Other identities:
For all n >= 1, 1 - A091225(a(n)) = A000035(n). [Maps even numbers to binary representations of irreducible GF(2) polynomials (= A014580) and odd numbers to the corresponding representations of reducible polynomials].