A245730 Primes of the form 1+2^k+2^(2*k)+...+2^((j-1)*k) for some k>0, j>0.
3, 5, 7, 17, 31, 73, 127, 257, 8191, 65537, 131071, 262657, 524287, 2147483647, 4432676798593, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727
Offset: 1
Keywords
Examples
The number 4432676798593 is in the list as it is prime and it is equal to 1+2^7+2^(2*7)+2^(3*7)+2^(4*7)+2^(5*7)+2^(6*7).
References
- Wells Johnson, On the nonvanishing of Fermat quotients (mod p), J. für Math. 292 (1977), 196-200.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..25
Programs
-
Python
from sympy import isprime sorted([int(('0'*m+'1')*n,2) for m in range(50) for n in range(1,50) if isprime(int(('0'*m+'1')*n,2))])
Comments