A245747 Number of identity trees with n nodes where the maximal outdegree (branching factor) equals 2.
1, 2, 5, 10, 21, 42, 87, 178, 371, 773, 1630, 3447, 7346, 15712, 33790, 72922, 158020, 343494, 749101, 1638102, 3591723, 7893801, 17387930, 38379199, 84875595, 188036829, 417284180, 927469844, 2064465340, 4601670624, 10270463564, 22950838754, 51346678940
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Crossrefs
Column k=2 of A244523.
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(b(i-1$2, k$2), j)* b(n-i*j, i-1, t-j, k), j=0..min(t, n/i)))) end: a:= n-> b(n-1$2, 2$2) -b(n-1$2, 1$2): seq(a(n), n=4..60);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ b[i-1, i-1, k, k], j]*b[n-i*j, i-1, t - j, k], {j, 0, Min[t, n/i]}]]]; a[n_] := b[n-1, n-1, 2, 2] - b[n-1, n-1, 1, 1]; Table[a[n], {n, 4, 60}] (* Jean-François Alcover, Aug 28 2021, after Maple code *)
Formula
a(n) = A063895(n+1)-1.