A245748 Number of identity trees with n nodes where the maximal outdegree (branching factor) equals 3.
1, 3, 9, 25, 66, 170, 431, 1076, 2665, 6560, 16067, 39219, 95476, 231970, 562736, 1363640, 3301586, 7988916, 19322585, 46722160, 112955614, 273063236, 660116215, 1595906490, 3858740567, 9331539319, 22570697689, 54605064084, 132137719127, 319841444030
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..1000
Crossrefs
Column k=3 of A244523.
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(b(i-1$2, k$2), j)* b(n-i*j, i-1, t-j, k), j=0..min(t, n/i)))) end: a:= n-> b(n-1$2, 3$2) -b(n-1$2, 2$2): seq(a(n), n=7..60);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ b[i-1, i-1, k, k], j]*b[n - i*j, i-1, t - j, k], {j, 0, Min[t, n/i]}]]]; a[n_] := b[n-1, n-1, 3, 3] - b[n-1, n-1, 2, 2]; Table[a[n], {n, 7, 60}] (* Jean-François Alcover, Aug 28 2021, after Maple code *)