A245749 Number of identity trees with n nodes where the maximal outdegree (branching factor) equals 4.
2, 6, 21, 63, 185, 512, 1403, 3750, 9928, 25969, 67462, 174039, 446884, 1142457, 2911078, 7396049, 18746761, 47420345, 119746936, 301941284, 760387426, 1912814031, 4807298905, 12071798139, 30292240853, 75965728619, 190398931985, 476980247827, 1194401725174
Offset: 11
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 11..1000
Crossrefs
Column k=4 of A244523.
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(b(i-1$2, k$2), j)* b(n-i*j, i-1, t-j, k), j=0..min(t, n/i)))) end: a:= n-> b(n-1$2, 4$2) -b(n-1$2, 3$2): seq(a(n), n=11..60);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ b[i-1, i-1, k, k], j]*b[n - i*j, i-1, t - j, k], {j, 0, Min[t, n/i]}]]]; a[n_] := b[n-1, n-1, 4, 4] - b[n-1, n-1, 3, 3]; Table[a[n], {n, 11, 60}] (* Jean-François Alcover, Aug 28 2021, after Maple code *)