A245760 Maximal multiplicative persistence of n in any base.
0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4, 3
Offset: 1
Keywords
Examples
a(23)=3 since the persistence of 23 in base 6 is 3 (23 in base 6 is 35 / 3x5=15 / 15 in base 6 is 23 / 2x3=6 / 6 in base 6 is 10 / 1x0=0 which is a single digit). In any other base the persistence of 23 is 3 or less, therefore a(23)=3. a(12)=1 since 12 does not have a multiplicative persistence greater than 1 in any base.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Tim Lamont-Smith, Multiplicative Persistence and Absolute Multiplicative Persistence, J. Int. Seq., Vol. 24 (2021), Article 21.6.7.
Programs
-
Maple
persistence:= proc(n,b) local i,m; m:= n; for i from 1 do m:= convert(convert(m,base,b),`*`); if m < b then return i fi od: end proc: A:= n -> max(seq(persistence(n,b),b=2..n-1)): 0, 1, seq(A(n),n=3..100); # Robert Israel, Jul 31 2014
-
Mathematica
persistence[n_, b_] := Module[{i, m}, m = n; For[i = 1, True, i++, m = Times @@ IntegerDigits[m, b]; If[m < b, Return [i]]]]; A[n_] := Max[Table[persistence[n, b], {b, 2, n-1}]]; Join[{0, 1}, Table[A[n], {n, 3, 100}]] (* Jean-François Alcover, Apr 30 2019, after Robert Israel *)
Comments