cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245774 Numbers k that divide 3*sigma(k).

Original entry on oeis.org

1, 3, 6, 12, 28, 84, 120, 234, 270, 496, 672, 1080, 1488, 1638, 6048, 6552, 8128, 24384, 30240, 32760, 35640, 199584, 435708, 523776, 2142720, 2178540, 4713984, 12999168, 18506880, 23569920, 33550336, 36197280, 45532800
Offset: 1

Views

Author

Jaroslav Krizek, Aug 26 2014

Keywords

Comments

Numbers k that divide 3*A000203(k).
Supersequence of A007691 and A245775.
Union of A007691 and 3*A227303. - Robert Israel, Aug 26 2014

Examples

			Number 12 is in the sequence because 12 divides 3*sigma(12) = 3*28.
		

Crossrefs

Cf. A000203 (sum of divisors), A007691 (multiply-perfect numbers).
Cf. A227303 (n divides sigma(3n)), A245775 (denominator(sigma(n)/n) = 3).
Cf. A272027 (3*sigma(n)).

Programs

  • Magma
    [n: n in [1..3000000] | Denominator(3*(SumOfDivisors(n))/n) eq 1]
    
  • Maple
    select(n -> 3*numtheory:-sigma(n) mod n = 0, [$1..10^6]); # Robert Israel, Aug 26 2014
  • Mathematica
    a245774[n_Integer] := Select[Range[n], Divisible[3*DivisorSigma[1, #], #] == True &]; a245774[10^7] (* Michael De Vlieger, Aug 27 2014 *)
  • PARI
    for(n=1,10^9,if((3*sigma(n))%n==0,print1(n,", "))) \\ Derek Orr, Aug 26 2014