A245780 Decimal expansion of (1-C_2)/e, a constant connected with two-sided generalized Fibonacci sequences, where C_2 is the Euler-Gompertz constant.
1, 4, 8, 4, 9, 5, 5, 0, 6, 7, 7, 5, 9, 2, 2, 0, 4, 7, 9, 1, 8, 3, 5, 9, 9, 9, 4, 7, 0, 1, 3, 3, 9, 2, 1, 8, 4, 1, 4, 7, 6, 3, 8, 3, 7, 6, 2, 4, 8, 5, 9, 6, 2, 6, 9, 2, 9, 8, 5, 8, 1, 8, 8, 6, 2, 3, 8, 9, 2, 7, 9, 7, 1, 8, 5, 7, 5, 8, 2, 5, 8, 6, 3, 4, 9, 3, 7, 0, 2, 3, 3, 1, 0, 7, 8, 2, 3, 9, 3, 7, 9
Offset: 0
Examples
0.148495506775922047918359994701339218414763837624859626929858...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.2 Euler-Gompertz Constant, p. 426.
Links
- Walther Janous, Problem 1552, Crux Mathematicorum, Vol. 16, No. 6 (1990), p. 171; Solution to Problem 1552, by Richard Katz, ibid., Vol. 17, No. 7 (1991), pp. 223-224.
- Peter Fishburn, Andrew Odlyzko and Fred Roberts, Two-sided generalized Fibonacci sequences, The Fibonacci Quarterly, Vol. 27, No. 4 (1989), pp. 352-361.
Programs
-
Mathematica
$RecursionLimit = 10^4; digits = 101; m0 = 100; dm = 100; Clear[g]; g[m_] := g[m] = (Clear[a, b, f]; b[n_] := 2*n; a[n_ /; n >= m] = 0; a[1] = 1; a[2] = -1; a[n_] := -(n-1)^2; f[m] = b[m]; f[n_] := f[n] = b[n] + a[n+1]/f[n+1]; (1 - f[0])/E); g[m0]; g[m = m0 + dm]; While[RealDigits[g[m], 10, digits] != RealDigits[g[m - dm], 10, digits], m = m + dm]; RealDigits[g[m], 10, digits] // First (* or, as verification: *) RealDigits[1/E + ExpIntegralEi[-1], 10, digits] // First
-
PARI
1/exp(1) - eint1(1,1)[1] \\ Michel Marcus, Aug 06 2020
Formula
Equals 1/e + Ei(-1), where Ei is the exponential integral function.
Equals Integral_{x=0..1} exp(-1/x) dx. - Amiram Eldar, Aug 06 2020
Equals Integral_{x=1..+oo} exp(-x)/x^2 dx. - Jianing Song, Oct 03 2021
Equals lim_{n->oo} (Sum_{k=1..n-1} (k/(k+1))^n)/n (Janous, 1990). - Amiram Eldar, Apr 03 2022