cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245780 Decimal expansion of (1-C_2)/e, a constant connected with two-sided generalized Fibonacci sequences, where C_2 is the Euler-Gompertz constant.

Original entry on oeis.org

1, 4, 8, 4, 9, 5, 5, 0, 6, 7, 7, 5, 9, 2, 2, 0, 4, 7, 9, 1, 8, 3, 5, 9, 9, 9, 4, 7, 0, 1, 3, 3, 9, 2, 1, 8, 4, 1, 4, 7, 6, 3, 8, 3, 7, 6, 2, 4, 8, 5, 9, 6, 2, 6, 9, 2, 9, 8, 5, 8, 1, 8, 8, 6, 2, 3, 8, 9, 2, 7, 9, 7, 1, 8, 5, 7, 5, 8, 2, 5, 8, 6, 3, 4, 9, 3, 7, 0, 2, 3, 3, 1, 0, 7, 8, 2, 3, 9, 3, 7, 9
Offset: 0

Views

Author

Jean-François Alcover, Aug 01 2014

Keywords

Examples

			0.148495506775922047918359994701339218414763837624859626929858...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.2 Euler-Gompertz Constant, p. 426.

Crossrefs

Cf. A073003 (C_2), A099285 (C_2 / e).

Programs

  • Mathematica
    $RecursionLimit = 10^4; digits = 101; m0 = 100; dm = 100; Clear[g]; g[m_] := g[m] = (Clear[a, b, f]; b[n_] := 2*n; a[n_ /; n >= m] = 0; a[1] = 1; a[2] = -1; a[n_] := -(n-1)^2; f[m] = b[m]; f[n_] := f[n] = b[n] + a[n+1]/f[n+1]; (1 - f[0])/E); g[m0]; g[m = m0 + dm]; While[RealDigits[g[m], 10, digits] != RealDigits[g[m - dm], 10, digits], m = m + dm]; RealDigits[g[m], 10, digits] // First
    (* or, as verification: *) RealDigits[1/E + ExpIntegralEi[-1], 10, digits] // First
  • PARI
    1/exp(1) - eint1(1,1)[1] \\ Michel Marcus, Aug 06 2020

Formula

Equals 1/e + Ei(-1), where Ei is the exponential integral function.
Equals Integral_{x=0..1} exp(-1/x) dx. - Amiram Eldar, Aug 06 2020
Equals Integral_{x=1..+oo} exp(-x)/x^2 dx. - Jianing Song, Oct 03 2021
Equals lim_{n->oo} (Sum_{k=1..n-1} (k/(k+1))^n)/n (Janous, 1990). - Amiram Eldar, Apr 03 2022