cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245791 Number of preferential arrangements of n labeled elements when at least k=6 elements per rank are required.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 925, 3433, 9439, 22881, 51767, 112269, 17390049, 140166497, 749266977, 3311021321, 13091222301, 48138992687, 2477067794573, 33549609515571, 292811657874791, 2040445353211231, 12382874543793451, 68436110449556971
Offset: 0

Views

Author

Alois P. Heinz, Aug 01 2014

Keywords

Crossrefs

Cf. column k=6 of A245732.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
           add(a(n-j)*binomial(n, j), j=6..n))
        end:
    seq(a(n), n=0..35);
  • Mathematica
    CoefficientList[Series[1/(2 + x - E^x + x^2/2! + x^3/3! + x^4/4! + x^5/5!),{x,0,30}],x]*Range[0,30]! (* Vaclav Kotesovec, Aug 02 2014 *)

Formula

E.g.f.: 1/(2 + x - exp(x) + x^2/2! + x^3/3! + x^4/4! + x^5/5!). - Vaclav Kotesovec, Aug 02 2014
a(n) ~ n! / ((1+r^5/5!) * r^(n+1)), where r = 2.77092853312194416389... is the root of the equation 2 + r - exp(r) + r^2/2! + r^3/3! + r^4/4! + r^5/5! = 0. - Vaclav Kotesovec, Aug 02 2014