A245792 Number of preferential arrangements of n labeled elements when at least k=7 elements per rank are required.
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 3433, 12871, 35751, 87517, 199785, 436697, 927657, 401005793, 3296326113, 17887397621, 80157730101, 321127444171, 1195366208091, 4226755326331, 486914893507831, 6899197122043711, 61532746814157691, 436349292456987871
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Crossrefs
Cf. column k=7 of A245732.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*binomial(n, j), j=7..n)) end: seq(a(n), n=0..35);
-
Mathematica
CoefficientList[Series[1/(2 + x - E^x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6!),{x,0,40}],x]*Range[0,40]! (* Vaclav Kotesovec, Aug 02 2014 *)
Formula
E.g.f.: 1/(2 + x - exp(x) + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6!). - Vaclav Kotesovec, Aug 02 2014
a(n) ~ n! / ((1+r^6/6!) * r^(n+1)), where r = 3.161936258680679649... is the root of the equation 2 + r - exp(r) + r^2/2! + r^3/3! + r^4/4! + r^5/5! + r^6/6! = 0. - Vaclav Kotesovec, Aug 02 2014