cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A245732 Number T(n,k) of endofunctions on [n] such that at least one preimage with cardinality >=k exists and a nonempty preimage of j implies that all i<=j have preimages with cardinality >=k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 27, 13, 1, 1, 256, 75, 7, 1, 1, 3125, 541, 21, 1, 1, 1, 46656, 4683, 141, 21, 1, 1, 1, 823543, 47293, 743, 71, 1, 1, 1, 1, 16777216, 545835, 5699, 183, 71, 1, 1, 1, 1, 387420489, 7087261, 42241, 2101, 253, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 30 2014

Keywords

Comments

T(0,0) = 1 by convention.
In general, column k > 1 is asymptotic to n! / ((1+r^(k-1)/(k-1)!) * r^(n+1)), where r is the root of the equation 2 - exp(r) + Sum_{j=1..k-1} r^j/j! = 0. - Vaclav Kotesovec, Aug 02 2014

Examples

			Triangle T(n,k) begins:
0 :         1;
1 :         1,      1;
2 :         4,      3,    1;
3 :        27,     13,    1,   1;
4 :       256,     75,    7,   1,  1;
5 :      3125,    541,   21,   1,  1, 1;
6 :     46656,   4683,  141,  21,  1, 1, 1;
7 :    823543,  47293,  743,  71,  1, 1, 1, 1;
8 :  16777216, 545835, 5699, 183, 71, 1, 1, 1, 1;
		

Crossrefs

Column k=0 gives A000312.
Columns k=1-10 give (for n>0): A000670, A032032, A102233, A232475, A245790, A245791, A245792, A245793, A245794, A245795.
T(2n,n) gives A244174(n) or 1+A007318(2n,n) = 1+A000984(n) for n>0.
Cf. A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    T:= (n, k)-> `if`(k=0, n^n, `if`(n=0, 0, b(n, k))):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n-j, k]*Binomial[n, j], {j, k, n}]]; T[n_, k_] := If[k == 0, n^n, If[n == 0, 0, b[n, k]]]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 05 2015, after Alois P. Heinz *)

Formula

E.g.f. (for column k > 0): 1/(2 -exp(x) +Sum_{j=1..k-1} x^j/j!) -1. - Vaclav Kotesovec, Aug 02 2014

A245861 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 8.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 12870, 48620, 87516, 151164, 251940, 406980, 639540, 980628, 9466982712, 78881427900, 432962644400, 1733914096200, 6029537213700, 19273224716460, 58178097911700, 168431757261300, 100033451495909100, 1461521434059544572
Offset: 8

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=8 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 8) -b(n, 9):
    seq(a(n), n=8..35);

Formula

E.g.f.: 1/(1-Sum_{j>=8} x^j/j!) - 1/(1-Sum_{j>=9} x^j/j!).
a(n) = A245793(n) - A245794(n) = A245732(n,8) - A245732(n,9).

A245862 Number of preferential arrangements of n labeled elements such that the minimal number of elements per rank equals 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 48620, 184756, 335920, 587860, 994840, 1634380, 2615008, 4085950, 6249100, 227882805150, 1914150638400, 10597377540750, 42894094729200, 150967391072550, 488846715676800, 1495608303532200, 4389524294884872, 12479799500904120
Offset: 9

Views

Author

Alois P. Heinz, Aug 04 2014

Keywords

Crossrefs

Column k=9 of A245733.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(n, j), j=k..n))
        end:
    a:= n-> b(n, 9) -b(n, 10):
    seq(a(n), n=9..40);

Formula

E.g.f.: 1/(1-Sum_{j>=9} x^j/j!) - 1/(1-Sum_{j>=10} x^j/j!).
a(n) = A245794(n) - A245795(n) = A245732(n,9) - A245732(n,10).
Showing 1-3 of 3 results.