A245811 Number of primes of the form k^(n+1) - n^k for some k > 1.
1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2
Offset: 1
Keywords
Links
- Juri-Stepan Gerasimov, Table of n, a(n) for n = 1..78
Crossrefs
Cf. A245809.
Programs
-
Maple
A245811 := proc(n) local a,k,p ; a := 0 ; for k from 2 to n+1 do p := k^(n+1)-n^k ; if isprime(p) then a := a+1 ; end if; end do: a ; end proc: seq(A245811(n),n=1..120) ; # R. J. Mathar, Sep 07 2014
-
PARI
a(n) = if(n==1, return(1)); my(k=2, c=0, t); while((t=k^(n+1)-n^k)>0, k++; if(isprime(t), c++)); c vector(80, n, a(n)) \\ Colin Barker, Aug 26 2014
Comments