cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245830 The Szeged index of a benzenoid consisting of a linear chain of n hexagons.

Original entry on oeis.org

54, 243, 656, 1381, 2506, 4119, 6308, 9161, 12766, 17211, 22584, 28973, 36466, 45151, 55116, 66449, 79238, 93571, 109536, 127221, 146714, 168103, 191476, 216921, 244526, 274379, 306568, 341181, 378306, 418031
Offset: 1

Views

Author

Emeric Deutsch, Aug 07 2014

Keywords

Examples

			a(1)=54; indeed, the benzenoid consists of 1 hexagon and each of its six edges contributes 3*3 towards the Szeged index; 6*9 = 54.
		

References

  • M. V. Diudea, I. Gutman, J. Lorentz, Molecular Topology, Nova Science Publishers, Huntington, NY (2001).

Crossrefs

Cf. A143938.

Programs

  • Maple
    a := proc (n) options operator, arrow: (44/3)*n^3+24*n^2+(43/3)*n+1 end proc: seq(a(n), n = 1 .. 30);
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {54, 243, 656, 1381}, 100] (* or *) Table[(44*n^3 + 72*n^2 + 43*n + 3)/3, {n,1,100}] (* G, C, Greubel, Dec 08 2016 *)
  • PARI
    Vec(z*(54 + 27*z + 8*z^2 - z^3)/(1-z)^4 + O(x^50)) \\ G. C. Greubel, Dec 08 2016

Formula

a(n) = (44*n^3 + 72*n^2 + 43*n + 3)/3.
G.f.: z*(54 + 27*z + 8*z^2 - z^3)/(1-z)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - G. C. Greubel, Dec 08 2016