cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245869 T(n,k)=Number of length n+2 0..k arrays with some pair in every consecutive three terms totalling exactly k.

Original entry on oeis.org

6, 19, 10, 36, 45, 16, 61, 100, 103, 26, 90, 193, 256, 239, 42, 127, 318, 549, 676, 553, 68, 168, 493, 960, 1629, 1764, 1281, 110, 217, 712, 1579, 3102, 4753, 4624, 2967, 178, 270, 993, 2368, 5515, 9726, 13961, 12100, 6873, 288, 331, 1330, 3433, 8840, 18505, 30900
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Comments

Table starts
.....6.......19........36.........61..........90..........127..........168
....10.......45.......100........193.........318..........493..........712
....16......103.......256........549.........960.........1579.........2368
....26......239.......676.......1629........3102.........5515.........8840
....42......553......1764.......4753........9726........18505........31176
....68.....1281......4624......13961.......30900........63241.......113024
...110.....2967.....12100......40901.......97602.......214315.......404264
...178.....6873.....31684.....119953......309078.......729097......1455496
...288....15921.....82944.....351649......977664......2475985......5223552
...466....36881....217156....1031057.....3094038......8415217.....18775816
...754....85435....568516....3022933.....9789654.....28590415.....67437448
..1220...197911...1488400....8863117....30977796.....97151683....242306240
..1974...458463...3896676...25986061....98020170....330100459....870461352
..3194..1062035..10201636...76189749...310161870...1121650903...3127322696
..5168..2460217..26708224..223384017...981426624...3811203385..11235107264
..8362..5699123..69923044..654949861..3105480558..12950003383..40363689352
.13530.13202089.183060900.1920277409..9826505742..44002376953.145010699592
.21892.30582803.479259664.5630150189.31093507092.149514426895.520968428032

Examples

			Some solutions for n=6 k=4
..1....4....0....4....0....1....2....3....1....2....0....3....3....0....2....4
..4....2....1....1....4....2....4....1....0....3....1....0....3....4....1....3
..0....2....4....0....3....2....0....3....3....1....3....1....1....2....3....1
..4....0....0....4....0....1....4....0....1....1....1....3....0....0....4....3
..4....2....4....4....4....2....1....4....4....3....2....1....4....4....1....2
..0....2....0....0....3....2....0....0....0....3....2....2....4....3....0....2
..2....0....4....4....0....1....4....4....3....1....4....3....0....1....4....2
..4....4....0....1....1....2....3....0....1....4....0....1....0....2....1....2
		

Crossrefs

Column 1 is A006355(n+4)
Column 3 is A206981(n+2)
Row 1 is A090381.

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-4) -a(n-5)
k=3: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3)
k=4: a(n) = 3*a(n-1) +a(n-2) -a(n-3) -5*a(n-4) -8*a(n-5) +3*a(n-6)
k=5: a(n) = 2*a(n-1) +4*a(n-2) -a(n-3)
k=6: a(n) = 3*a(n-1) +3*a(n-2) -a(n-3) -9*a(n-4) -24*a(n-5) +5*a(n-6)
k=7: a(n) = 2*a(n-1) +6*a(n-2) -a(n-3)
k=8: a(n) = 3*a(n-1) +5*a(n-2) -a(n-3) -13*a(n-4) -48*a(n-5) +7*a(n-6)
k=9: a(n) = 2*a(n-1) +8*a(n-2) -a(n-3)
Empirical for row n:
n=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4)
n=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
n=3: a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6)
n=4: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7)
n=5: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8)
n=6: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)
n=7: a(n) = 2*a(n-1) +3*a(n-2) -8*a(n-3) -2*a(n-4) +12*a(n-5) -2*a(n-6) -8*a(n-7) +3*a(n-8) +2*a(n-9) -a(n-10)
From Robert Israel, Aug 06 2024: (Start) For odd k, T(n,k) = 2 T(n-1,k) + (k-1) T(n-2,k) - T(n-3,k).
For even k, T(n,k) = 3 T(n-1,k) + (k-3) T(n-2,k) - T(n-3,k) + (2 k - 3) T(n-4,k) - k (k-2) T(n-5,k) + (k-1) T(n-6,k).
See links. (End)