cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A090381 Expansion of (1+4x+7x^2)/((1-x)^2*(1-x^2)).

Original entry on oeis.org

1, 6, 19, 36, 61, 90, 127, 168, 217, 270, 331, 396, 469, 546, 631, 720, 817, 918, 1027, 1140, 1261, 1386, 1519, 1656, 1801, 1950, 2107, 2268, 2437, 2610, 2791, 2976, 3169, 3366, 3571, 3780, 3997, 4218, 4447, 4680, 4921, 5166, 5419, 5676, 5941, 6210, 6487, 6768, 7057, 7350, 7651, 7956, 8269
Offset: 0

Views

Author

N. J. A. Sloane, Jan 30 2004

Keywords

Comments

Also degree of toric ideal associated with path with n+2 nodes [Eriksson].
Also number of triples (t_1, t_2, t_3) with all t_i in the range 0 <= t_i <= n such that at least one t_i + t_j = n (with i != j). - R. H. Hardin, Aug 04 2014
Conjecture: a(n) is the maximum number of areas that are defined by the 3n angle (n+1)-sectors in a triangle. - Nicolas Nagel, Sep 09 2016

Examples

			Some triples for n=10 (from _R. H. Hardin_, Aug 04 2014):
..3....1....2....1....7....9....5....8....5....6....9....4...10....8....6....2
..3....3....8....9....3....3....7....2....9....4....3...10....9....1....8....7
..7....7...10....5....2....1....3....7....1....3....7....0....1....9....4....8
		

Crossrefs

Row 1 of A245869.
Central spine of triangle in A245556. Cf. also A245557.

Programs

  • Magma
    [3*n*(n+1)+(1+(-1)^n)/2 : n in [0..50]]; // Wesley Ivan Hurt, Sep 13 2016
  • Maple
    f:=n-> if n mod 2 = 0 then t:=n/2; 12*t^2+6*t+1 else
    t:=(n-1)/2; 12*t^2+18*t+6; fi;
    [seq(f(n), n=0..100)];
  • Mathematica
    CoefficientList[Series[(1 + 4 x + 7 x^2)/((1 - x)^2*(1 - x^2)), {x, 0, 52}], x] (* Michael De Vlieger, May 07 2016 *)
    Table[3 n (n + 1) + (1 + (-1)^n)/2, {n, 0, 52}] (* or *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 6, 19, 36}, 53] (* Michael De Vlieger, Sep 12 2016 *)
  • PARI
    x='x+O('x^99); Vec((1+4*x+7*x^2)/((1-x)^2*(1-x^2))) \\ Altug Alkan, May 12 2016
    

Formula

G.f.: (1+4x+7x^2)/((1-x)^2*(1-x^2)).
a(2t) = 12t^2+6t+1, a(2t+1) = 12t^2+18t+6 (t >= 0).
The defining g.f. implies the recurrence a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), an empirical discovery of R. H. Hardin.
a(n) = 3*n*(n+1)+(1+(-1)^n)/2. - Wesley Ivan Hurt, May 06 2016
E.g.f.: 3*x*(2 + x)*exp(x) + cosh(x). - Ilya Gutkovskiy, May 06 2016

Extensions

Edited by N. J. A. Sloane, Aug 04 2014 (merging the old A090381 and A245870).

A245864 Number of length n+2 0..2 arrays with some pair in every consecutive three terms totalling exactly 2.

Original entry on oeis.org

19, 45, 103, 239, 553, 1281, 2967, 6873, 15921, 36881, 85435, 197911, 458463, 1062035, 2460217, 5699123, 13202089, 30582803, 70845443, 164114349, 380172929, 880675315, 2040095313, 4725906149, 10947620333, 25360298571, 58747446847
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Examples

			Some solutions for n=10:
..1....2....1....2....0....1....0....1....0....0....2....0....0....2....0....0
..1....1....1....2....0....1....2....1....2....1....2....1....0....1....1....1
..1....1....1....0....2....1....1....1....0....1....0....2....2....0....1....1
..1....0....0....2....1....1....1....1....2....2....2....0....0....2....2....0
..1....2....2....0....1....1....1....2....2....0....1....2....2....2....0....1
..0....2....0....1....2....2....0....1....0....1....1....0....1....0....2....2
..2....0....1....1....0....1....2....0....2....1....0....2....1....2....2....0
..2....1....1....1....2....0....0....2....2....1....1....1....1....2....0....1
..0....2....2....1....0....1....0....1....0....1....1....1....0....0....0....1
..2....1....1....0....1....2....2....1....1....1....1....0....1....0....2....0
..2....0....0....1....1....1....0....2....2....2....1....2....1....2....2....1
..0....1....1....1....1....0....2....1....0....1....1....0....2....0....0....2
		

Crossrefs

Column 2 of A245869.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - a(n-4) - a(n-5).
Empirical g.f.: x*(19 + 7*x - 6*x^2 - 12*x^3 - 9*x^4) / ((1 - x)*(1 - x - 2*x^2 - 2*x^3 - x^4)). - Colin Barker, Nov 03 2018

A245865 Number of length n+2 0..4 arrays with some pair in every consecutive three terms totalling exactly 4.

Original entry on oeis.org

61, 193, 549, 1629, 4753, 13961, 40901, 119953, 351649, 1031057, 3022933, 8863117, 25986061, 76189749, 223384017, 654949861, 1920277409, 5630150189, 16507298221, 48398515249, 141901859897, 416048676085, 1219832512513, 3576483842281
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Examples

			Some solutions for n=8:
  1   1   0   4   1   3   2   0   0   0   1   4   2   2   1   3
  2   4   1   1   0   0   2   1   2   4   0   0   3   2   3   0
  3   0   3   3   4   4   0   3   2   4   3   1   1   0   1   4
  2   4   1   0   3   0   4   1   1   0   1   4   2   4   2   2
  2   4   1   4   1   3   2   2   2   4   1   0   3   0   2   2
  0   0   3   0   3   1   2   2   3   2   3   3   1   1   2   0
  2   4   3   4   2   0   0   4   1   2   4   1   0   3   2   4
  2   3   1   0   1   3   2   0   3   1   0   4   4   1   4   3
  0   1   3   4   2   1   2   2   4   3   1   0   0   4   0   0
  2   4   1   3   2   3   4   2   1   3   4   1   1   0   4   1
		

Crossrefs

Column 4 of A245869.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-2) - a(n-3) - 5*a(n-4) - 8*a(n-5) + 3*a(n-6).
Empirical g.f.: x*(61 + 10*x - 91*x^2 - 150*x^3 - 185*x^4 + 75*x^5) / (1 - 3*x - x^2 + x^3 + 5*x^4 + 8*x^5 - 3*x^6). - Colin Barker, Nov 04 2018

A245866 Number of length n+2 0..5 arrays with some pair in every consecutive three terms totalling exactly 5.

Original entry on oeis.org

90, 318, 960, 3102, 9726, 30900, 97602, 309078, 977664, 3094038, 9789654, 30977796, 98020170, 310161870, 981426624, 3105480558, 9826505742, 31093507092, 98387556594, 311322635814, 985101990912, 3117106968486, 9863299264806
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Examples

			Some solutions for n=7:
  1   5   0   3   5   3   2   3   0   4   3   4   1   0   1   3
  5   4   3   1   2   0   2   4   1   0   2   1   4   2   0   0
  0   1   2   4   3   2   3   1   4   5   0   5   2   3   5   5
  2   0   3   5   3   5   4   5   0   0   3   0   1   1   0   0
  3   4   2   0   2   0   1   0   1   5   2   4   3   2   1   2
  2   5   3   5   1   5   4   0   4   3   4   1   2   3   4   5
  0   0   4   0   4   4   4   5   1   2   1   4   4   0   3   0
  5   4   1   3   1   0   1   2   0   0   4   1   3   5   1   4
  2   5   2   2   3   1   5   3   4   3   5   3   1   5   2   1
		

Crossrefs

Column 5 of A245869.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - a(n-3).
Empirical g.f.: 6*x*(15 + 23*x - 6*x^2) / (1 - 2*x - 4*x^2 + x^3). - Colin Barker, Nov 04 2018

A245867 Number of length n+2 0..6 arrays with some pair in every consecutive three terms totalling exactly 6.

Original entry on oeis.org

127, 493, 1579, 5515, 18505, 63241, 214315, 729097, 2475985, 8415217, 28590415, 97151683, 330100459, 1121650903, 3811203385, 12950003383, 44002376953, 149514426895, 508030458319, 1726221621517, 5865476355769, 19930126601527
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Examples

			Some solutions for n=6:
..4....2....1....2....2....5....6....1....2....4....3....4....3....4....6....0
..4....0....1....6....6....4....4....6....1....4....3....2....6....6....0....6
..2....6....5....4....0....1....0....5....5....2....3....3....0....2....1....4
..2....5....2....2....4....5....6....1....1....3....0....3....6....4....5....2
..4....1....1....4....2....1....3....5....1....3....6....6....2....3....1....6
..3....4....4....5....3....2....3....6....5....3....0....0....4....2....5....0
..3....2....5....1....3....5....4....0....0....0....2....2....6....4....1....4
..3....3....2....5....6....1....2....5....1....6....6....6....0....0....4....6
		

Crossrefs

Column 6 of A245869.

Formula

Empirical: a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3) - 9*a(n-4) - 24*a(n-5) + 5*a(n-6).
Empirical g.f.: x*(127 + 112*x - 281*x^2 - 574*x^3 - 1141*x^4 + 245*x^5) / (1 - 3*x - 3*x^2 + x^3 + 9*x^4 + 24*x^5 - 5*x^6). - Colin Barker, Nov 04 2018

A245868 Number of length n+2 0..7 arrays with some pair in every consecutive three terms totalling exactly 7.

Original entry on oeis.org

168, 712, 2368, 8840, 31176, 113024, 404264, 1455496, 5223552, 18775816, 67437448, 242306240, 870461352, 3127322696, 11235107264, 40363689352, 145010699592, 520968428032, 1871637364264, 6724074597128, 24157004951808, 86786820122120
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Examples

			Some solutions for n=6:
..4....6....7....0....7....3....6....4....0....2....6....1....6....5....0....2
..2....4....6....0....2....6....3....5....7....6....0....7....6....6....7....5
..3....3....1....7....0....1....4....2....6....1....1....0....1....2....6....6
..5....6....4....4....5....6....0....6....1....1....6....1....1....1....0....1
..2....1....3....0....2....5....7....5....0....6....7....6....6....6....7....7
..4....6....4....3....4....2....2....2....7....1....0....6....7....7....2....6
..5....3....3....4....3....5....5....0....5....1....7....1....0....0....5....1
..2....4....2....3....2....4....6....5....2....6....0....2....2....6....3....7
		

Crossrefs

Column 7 of A245869.

Formula

Empirical: a(n) = 2*a(n-1) + 6*a(n-2) - a(n-3).
Empirical g.f.: 8*x*(21 + 47*x - 8*x^2) / (1 - 2*x - 6*x^2 + x^3). - Colin Barker, Nov 04 2018
Empirical recurrence verified: see link. - Robert Israel, May 13 2020

A245871 Number of length 2+2 0..n arrays with some pair in every consecutive three terms totalling exactly n.

Original entry on oeis.org

10, 45, 100, 193, 318, 493, 712, 993, 1330, 1741, 2220, 2785, 3430, 4173, 5008, 5953, 7002, 8173, 9460, 10881, 12430, 14125, 15960, 17953, 20098, 22413, 24892, 27553, 30390, 33421, 36640, 40065, 43690, 47533, 51588, 55873, 60382, 65133, 70120, 75361
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Examples

			Some solutions for n=10:
..9....1....8....0....9....0...10....4....3....5....8....4....3...10....3....9
..0....9....4....6....0...10....0....4....4....5....2....4....4....2....1....5
.10....1....6....4...10....0...10....6....6....9...10....6....6....8....9....1
.10....0....0....0....1....3....4....3....0....1....8....1....6....8....7....5
		

Crossrefs

Row 2 of A245869.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
Conjectures from Colin Barker, Nov 04 2018: (Start)
G.f.: x*(10 + 15*x - 15*x^2 + 3*x^3 - x^4) / ((1 - x)^4*(1 + x)).
a(n) = 1 + 4*n + 7*n^2 + n^3 for n even.
a(n) = -2 + 4*n + 7*n^2 + n^3 for n odd.
(End)

A245872 Number of length 3+2 0..n arrays with some pair in every consecutive three terms totalling exactly n.

Original entry on oeis.org

16, 103, 256, 549, 960, 1579, 2368, 3433, 4720, 6351, 8256, 10573, 13216, 16339, 19840, 23889, 28368, 33463, 39040, 45301, 52096, 59643, 67776, 76729, 86320, 96799, 107968, 120093, 132960, 146851, 161536, 177313, 193936, 211719, 230400, 250309
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Examples

			Some solutions for n=10:
  7   7   7   5   1   9   3   6   4   9  10  10   5   2   9   0
  3   4   3   5   1   9  10   4   2   1   8   0   7   4   5   6
  5   6   5   4   9   1   7  10   8   4   2  10   5   6   5   4
  5   2   7   5   5   4   3   0   8   6   4   0   5   4   5   5
  4   4   3   6   5   9  10   6   2   4   6   6   8   1   3   6
		

Crossrefs

Row 3 of A245869.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
Conjectures from Colin Barker, Nov 04 2018: (Start)
G.f.: x*(16 + 71*x + 34*x^2 - 2*x^3 + 2*x^4 - x^5) / ((1 - x)^4*(1 + x)^2).
a(n) = 1 + 5*n + 13*n^2 + 5*n^3 for n even.
a(n) = -5 + 3*n + 13*n^2 + 5*n^3 for n odd.
(End)

A245873 Number of length 4+2 0..n arrays with some pair in every consecutive three terms totalling exactly n.

Original entry on oeis.org

26, 239, 676, 1629, 3102, 5515, 8840, 13625, 19810, 28071, 38316, 51349, 67046, 86339, 109072, 136305, 167850, 204895, 247220, 296141, 351406, 414459, 485016, 564649, 653042, 751895, 860860, 981765, 1114230, 1260211, 1419296, 1593569
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Examples

			Some solutions for n=10:
   0   6   8   3   8   4   7   8   7   1   8  10   4   3   7   1
  10   5   6  10   6   2   3   9   4   0   1   2   5   3   4   0
   4   4   4   0   4   6   3   1   3  10   9   8   5   7   6  10
   6   5  10   7   4   8   7   1   7   1   3   7   3   3  10   0
   1   5   0  10   6   2   6   9   8   0   7   3   7   1   0   4
   4   8   7   0   0   0   4   7   3  10   7   4   9   7   9  10
		

Crossrefs

Row 4 of A245869.

Formula

Empirical: a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7).
Conjectures from Colin Barker, Nov 04 2018: (Start)
G.f.: x*(26 + 161*x - 15*x^2 - 30*x^3 - 44*x^4 - 3*x^5 + x^6) / ((1 - x)^5*(1 + x)^2).
a(n) = 1 + 7*n + 20*n^2 + 16*n^3 + n^4 for n even.
a(n) = -8 - 3*n + 20*n^2 + 16*n^3 + n^4 for n odd.
(End)

A245874 Number of length 5+2 0..n arrays with some pair in every consecutive three terms totalling exactly n.

Original entry on oeis.org

42, 553, 1764, 4753, 9726, 18505, 31176, 50401, 76050, 111721, 156972, 216433, 289254, 381193, 490896, 625345, 782586, 970921, 1187700, 1442641, 1732302, 2067913, 2445144, 2876833, 3357666, 3902185, 4503996, 5179441, 5920950, 6746761
Offset: 1

Views

Author

R. H. Hardin, Aug 04 2014

Keywords

Examples

			Some solutions for n=10:
..9....4...10....8....2....8....7....8....7....7....6....9....3....2....5....0
..0....6....0....2....6....4....1....4....0....4....4....7....7....1....5....4
.10....6...10....3....4....6....9....2...10....6....6....3....3....9....5...10
..0....4....7....7....6....1....3....8....3....8....4....7....4...10....6....0
..5....0....3....8....4....9....7...10....7....2...10....5....7....1....4....4
.10...10....9....2....6....1....7....0...10....8....0....5....3....9....6....6
..0....5....1....6....7....3....3....9....0....8....8....2....2....2....8....8
		

Crossrefs

Row 5 of A245869.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) -2*a(n-7) + a(n-8).
Conjectures from Colin Barker, Nov 04 2018: (Start)
G.f.: x*(42 + 469*x + 574*x^2 + 371*x^3 + 10*x^4 - 121*x^5 - 2*x^6 + x^7) / ((1 - x)^5*(1 + x)^3).
a(n) = 1 + 12*n + 26*n^2 + 39*n^3 + 7*n^4 for n even.
a(n) = -9 - 18*n + 23*n^2 + 39*n^3 + 7*n^4 for n odd.
(End)
Showing 1-10 of 12 results. Next