cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245877 Primes p such that p - d and p + d are also primes, where d is the largest digit of p.

Original entry on oeis.org

263, 563, 613, 653, 1613, 1663, 3463, 4643, 5563, 5653, 6263, 6323, 12653, 13463, 14633, 16063, 16223, 21163, 21563, 25463, 26113, 30643, 32063, 33623, 36313, 41263, 41603, 44263, 53623, 54623, 56003, 60133, 61553, 62213, 62633, 64013, 65413, 105613, 106213
Offset: 1

Views

Author

Colin Barker, Aug 05 2014

Keywords

Comments

Intersection of A245742 and A245743.
The largest digit of a(n) is 6, and the least significant digit of a(n) is 3.
Intersection of A006489, A011536, and complements of A011537, A011538, A011539. - Robert Israel, Aug 05 2014

Examples

			The prime 263 is in the sequence because 263 - 6 = 257 and 263 + 6 = 269 are both primes.
		

Crossrefs

Programs

  • Mathematica
    pdpQ[n_]:=Module[{m=Max[IntegerDigits[n]]},AllTrue[n+{m,-m},PrimeQ]]; Select[ Prime[Range[11000]],pdpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 13 2017 *)
  • PARI
    select(p->d=vecsort(digits(p),,4)[1]; isprime(p-d) && isprime(p+d), primes(20000))
    
  • Python
    import sympy
    from sympy import prime
    from sympy import isprime
    for n in range(1,10**5):
      s=prime(n)
      lst = []
      for i in str(s):
        lst.append(int(i))
      if isprime(s+max(lst)) and isprime(s-max(lst)):
        print(s,end=', ')
    # Derek Orr, Aug 13 2014